• Title/Summary/Keyword: Buy & Hold Strategy

Search Result 18, Processing Time 0.027 seconds

Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy (변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.57-62
    • /
    • 2023
  • This research is a comparative analysis of the U.S. S&P 500 index using the volatility breakout strategy against the Buy and Hold approach. The volatility breakout strategy is a trading method that exploits price movements after periods of relative market stability or concentration. Specifically, it is observed that large price movements tend to occur more frequently after periods of low volatility. When a stock moves within a narrow price range for a while and then suddenly rises or falls, it is expected to continue moving in that direction. To capitalize on these movements, traders adopt the volatility breakout strategy. The 'k' value is used as a multiplier applied to a measure of recent market volatility. One method of measuring volatility is the Average True Range (ATR), which represents the difference between the highest and lowest prices of recent trading days. The 'k' value plays a crucial role for traders in setting their trade threshold. This study calculated the 'k' value at a general level and compared its returns with the Buy and Hold strategy, finding that algorithmic trading using the volatility breakout strategy achieved slightly higher returns. In the future, we plan to present simulation results for maximizing returns by determining the optimal 'k' value for automated trading of the S&P 500 index using artificial intelligence deep learning techniques.

The Information Content of Option Prices: Evidence from S&P 500 Index Options

  • Ren, Chenghan;Choi, Byungwook
    • Management Science and Financial Engineering
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2015
  • This study addresses the question as to whether the option prices have useful predictive information on the direction of stock markets by investigating a forecasting power of volatility curvatures and skewness premiums implicit in S&P 500 index option prices traded in Chicago Board Options Exchange. We begin by estimating implied volatility functions and risk neutral price densities every minute based on non-parametric method and then calculate volatility curvature and skewness premium using them. The rationale is that high volatility curvature or high skewness premium often leads to strong bullish sentiment among market participants. We found that the rate of return on the signal following trading strategy was significantly higher than that on the intraday buy-and-hold strategy, which indicates that the S&P500 index option prices have a strong forecasting power on the direction of stock index market. Another major finding is that the information contents of S&P 500 index option prices disappear within one minute, and so one minute-delayed signal following trading strategy would not lead to any excess return compared to a simple buy-and-hold strategy.

Performance Analysis of Bitcoin Investment Strategy using Deep Learning (딥러닝을 이용한 비트코인 투자전략의 성과 분석)

  • Kim, Sun Woong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.249-258
    • /
    • 2021
  • Bitcoin prices have been soaring recently as investors flock to cryptocurrency exchanges. The purpose of this study is to predict the Bitcoin price using a deep learning model and analyze whether Bitcoin is profitable through investment strategy. LSTM is utilized as Bitcoin prediction model with nonlinearity and long-term memory and the profitability of MA cross-over strategy with predicted prices as input variables is analyzed. Investment performance of Bitcoin strategy using LSTM forecast prices from 2013 to 2021 showed return improvement of 5.5% and 46% more than market price MA cross-over strategy and benchmark Buy & Hold strategy, respectively. The results of this study, which expanded to recent data, supported the inefficiency of the cryptocurrency market, as did previous studies, and showed the feasibility of using the deep learning model for Bitcoin investors. In future research, it is necessary to develop optimal prediction models and improve the profitability of Bitcoin investment strategies through performance comparison of various deep learning models.

“Left Shoulder”Detection in Korea Composite Stock Price Index Using an Auto-Associative Neural Network and Sign Variables (자기연상 학습 신경망과 부호 입력 변수를 이용한 종합주가지수 "왼쪽어깨" 패턴 검출)

  • 백진우;조성준
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.29-32
    • /
    • 2000
  • We proposed a neural network based “left shoulder”detector. The auto-associative neural network was trained with the “left shoulder”patterns obtained from the Korea Composite Stock Price Index, and then tested out-of-sample with a reasonably good result. A hypothetical investment strategy based on the detector achieved a return of 132% in comparison with 39% return from a buy and hold strategy

  • PDF

Predicting Korea Composite Stock Price Index Movement Using Artificial Neural Network (인공신경망을 이용한 한국 종합주가지수의 방향성 예측)

  • 박종엽;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.103-121
    • /
    • 1995
  • This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.

  • PDF

Predicting the FTSE China A50 Index Movements Using Sample Entropy

  • AKEEL, Hatem
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • This research proposes a novel trading method based on sample entropy for the FTSE China A50 Index. The approach is used to determine the points at which the index should be bought and sold for various holding durations. The findings are then compared to three other trading strategies: buying and holding the index for the entire time period, using the Relative Strength Index (RSI), and using the Moving Average Convergence Divergence (MACD) as buying/selling signaling tools. The unique entropy trading method, which used 90-day holding periods and was called StEn(90), produced the highest cumulative return: 25.66 percent. Regular buy and hold, RSI, and MACD were all outperformed by this strategy. In fact, when applied to the same time periods, RSI and MACD had negative returns for the FTSE China A50 Index. Regular purchase and hold yielded a 6% positive return, whereas RSI yielded a 28.56 percent negative return and MACD yielded a 33.33 percent negative return.

Technical Trading Rules for Bitcoin Futures (비트코인 선물의 기술적 거래 규칙)

  • Kim, Sun Woong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.94-103
    • /
    • 2021
  • This study aims to propose technical trading rules for Bitcoin futures and empirically analyze investment performance. Investment strategies include standard trading rules such as VMA, TRB, FR, MACD, RSI, BB, using Bitcoin futures daily data from December 18, 2017 to March 31, 2021. The trend-following rules showed higher investment performance than the comparative strategy B&H. Compared to KOSPI200 index futures, Bitcoin futures investment performance was higher. In particular, the investment performance has increased significantly in Sortino Ratio, which reflects downside risk. This study can find academic significance in that it is the first attempt to systematically analyze the investment performance of standard technical trading rules of Bitcoin futures. In future research, it is necessary to improve investment performance through the use of deep learning models or machine learning models to predict the price of Bitcoin futures.

A Study on Stock Market Cycle and Investment Strategies (주식시장국면 예측과 투자전략에 대한 연구)

  • Kyoung-Woo Sohn;Ji-Yeong Chung
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.4
    • /
    • pp.45-59
    • /
    • 2022
  • Purpose - This study investigates the performance of investment strategies incorporating estimated stock market cycle based on a lead-lag relationship between business cycle and stock market cycle, thereby deriving empirical implications on risk management. Design/methodology/approach - The data period ranges from June 1953 to September 2022 and de-trended short rate, term spread, credit spread, stock market volatility are considered as major input variables to estimate business cycle and stock market cycle by applying probit model. Based on the estimated stock market cycle, two types of strategies are constructed and their performance relative to the benchmark is empirically examined. Findings Two types of strategies based on stock market cycle are considered: The first strategy is to long(short) on stocks when stock market stage is expected to be an expansion(a recession), and the second one is to long on stocks(bonds) when expecting an expansion(a recession). The empirical results show that the strategies based on stock market cycle outperforms a simple buy and hold strategy in both in-sample and out-of-sample investigation. Also the out-of-sample evidence suggests that the second strategy which is in line with asset allocation is more profitable than the first one. Research implications or Originality The strategies considered in this study are based on the estimated stock market cycle which only depends on a few easily available financial variables, thereby making easier to establish such a strategy. It implies that investors enhance investment performance by constructing a relatively simple trading strategies if they set their position on stocks or choose which asset class to buy conditioning on stock market cycle.

Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning (투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과)

  • Kim, Kyung Mock;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.210-218
    • /
    • 2023
  • The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.