• Title/Summary/Keyword: Butyl ether

Search Result 160, Processing Time 0.023 seconds

Etherification of n-Butanol to Di-n-Butyl Ether over H3+xPW12-xNbxO40 (x=0, 1, 2, 3) Keggin and H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) Wells-Dawson Heteropolyacid Catalysts (Keggin형 H3+xPW12-xNbxO40 (x=0, 1, 2, 3) 및 Wells-Dawson형 H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) 헤테로폴리산 촉매를 이용한 n-Butanol로부터 Di-n-Butyl Ether의 제조)

  • Kim, Jeong Kwon;Choi, Jung Ho;Yi, Jongheop;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.251-256
    • /
    • 2012
  • Etherification of n-butanol to di-n-Butyl Ether was carried out over Keggin $H_{3+x}PW_{12-x}Nb_xO_{40}$ (x=0, 1, 2, 3) and $H_{6+x}P_2W_{18-x}Nb_xO_{62}$ (x=0, 1, 2, 3) Wells-Dawson heteropolyacid catalysts. Niobium-substituted Keggin and Wells-Dawson heteropolyacid catalysts with different niobium content were prepared. Successful preparation of the catalysts was confirmed by FT-IR, ICP-AES, and $^{31}P$ NMR analyses. Their acid properties were determined by $NH_3$-TPD (Temperature-Programmed Desorption) measurements. Heteropolyacid catalysts showed different acid properties depending on niobium content in both series. The correlation between acid properties of heteropolyacid catalysts and catalytic activity was then established. Acidity of Keggin and Wells-Dawson heteropolyacid catalysts decreased with increasing niobium content, and conversion of n-butanol and yield for di-n-butyl ether increased with increasing acidity of the catalysts, regardless of the identity of heteropolyacid catalysts (without heteropolyacid structural sensitivity). Thus, acidity of heteropolyacid catalysts served as an important factor determining the catalytic performance in the etherification of n-butanol to di-n-Butyl Ether.

Protection Process of the tert-Butyl Group as a Non-Polar Moiety of D-Serine: Unexpected Rearrangement

  • Choi, Bo-Eun;Jeong, Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.564-567
    • /
    • 2000
  • The use of amino acid derivatives as building blocks in peptide synthesis is increasingly being recognized as a potential route for the development of pharmaceutical agents. Side chain protection of polyfunctional amino acids such as Ser, Thr, Tyr is viewed as being particularly important. Although these derivatives are commercially listed, they are expensive and not widely available. We describe here a practical large-scale synthesis of t-butyl introduced D-serine, one of the building blocks of zoladex, a peptide drug.

  • PDF

Human Health Risk Assessment of n-Butyl Glycidyl Ether from Occupational Workplaces (작업장에서의 n-부틸 글리시딜 에테르에 대한 건강 위험성 평가)

  • Moon, Hyung-Il;Choi, Hyeon-Il;Sin, Saemi;Byeon, Sang-Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Objectives: This study was conducted to evaluate the health risk of workers exposed to butyl glycidyl ether to prevent them from developing occupational diseases. Methods: The workplaces that coat floor with epoxy were selected and the samples were collected and analyzed with NIOSH 1616 Method. We calculate workplace reference concentration using with NOAEL estimated by the study of Anderson et al. in 1978. Risk was calculated by the ratio of exposure to workplace reference concentration. Monte-Carlo simulation was performed to derivate the median, cumulative 90%, and cumulative 95% value by using Crystal Ball. Results: Butyl glycidyl ether is a skin, eye irritator and can result in central nervous system depression, allergic reaction. NOAEL was 38 ppm and workplace reference concentration was calculated as 0.73 ppm corrected with uncertainty factors. Geometric mean was 1.152 ppm and geometric standard deviation was 1.522 by the workplace environment measurement. The median, cumulative 90%, and cumulative 95% value of risk were calculated as 1.617, 1.934, and 2.092, respectively. Conclusions: Not only cumulative 90% and cumulative 95% value but also the median of risk is higher than 1.0 by the risk characterization, so it can do a lot of harm to workers. Therefore, the process of derivating workplace reference concentration and the appropriacy of the uncertainty factors should be re-examined.

부탄 이용 미생물에 의한 MTBE(Methyl tert-Butyl Ether) 분해 특성

  • 장순용;백승식;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.136-139
    • /
    • 2001
  • In this study, we have examined potential degradation of MTBE (methy1 tert-butyl ether) by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown n-butane, and the disappearance of TBA after complete degradation of MTBE suggest the further degradation of TBA. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane-utilizing bacteria. MTBE was degraded ENV425 and mixed culture grown n-butane, and TBA (tert-butyl alcohol) was produced as product of MTBE oxidation. TBA production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. The observed maximal transformation yield (T$_{y}$) were 44.7 and 34.0 (nmol MTRE degraded/$\mu$mol n-butane Utilized) by ENV425 and mixed culture, respectively.y.

  • PDF

Evaluation of Intrinsic Bioremediation of Methyl Tert-butyl Ether (MTBE) Contaminated Groundwater

  • Chen, Colin S.;Tien, Chien-Jun;Zhan, Kai-Van
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.9-17
    • /
    • 2014
  • This paper reported the use of real-time polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and the culture-based method in the intrinsic bioremediation study at a petroleum contaminated site. The study showed that phenol hydroxylase gene was detected in groundwater contaminated with benzene, toluene, ethylbenzene, xylene isomers (BTEX) and methyl tert-butyl ether (MTBE). This indicated that intrinsic bioremediation occurred at the site. DGGE analyses revealed that the petroleum-hydrocarbon plume caused the variation in microbial communities. MTBE degraders including Pseudomonas sp. NKNU01, Bacillus sp. NKNU01, Klebsiella sp. NKNU01, Enterobacter sp. NKNU01, and Enterobacter sp. NKNU02 were isolated from the contaminated groundwater using the cultured-based method. Among these five strains, Enterobacter sp. NKNU02 is the most effective stain at degrading MTBE without the addition of pentane. The MTBE biodegradation experiment indicated that the isolated bacteria were affected by propane. Biodegradation of MTBE was decreased but not totally inhibited in the mixtures of BTEX. Enterobacter sp. NKNU02 degraded about 60% of MTBE in the bioreactor study. Tert-butyl alcohol (TBA), acetic acid, 2-propanol, and propenoic acid were detected using gas chromatography/mass spectrometry during MTBE degraded by the rest cells of Enterobacter sp. NKNU02. The effectiveness of bioremediation of MTBE was assessed for potential field-scale application.

Characteristics of Heteropoly Acid Catalyst for the Synthesis of ETBE(Ethyl Tert-Butyl Ether) (ETBE(Ethyl Tert-Butyl Ether) 합성에 대한 헤테로폴리산 촉매의 특성)

  • Park, Nam-Cook;Shin, Jae-Soon;Seo, Seong-Gyu;Lim, Yeoung-Taek;Kim, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1994
  • Reaction characteristics and correlations between the acidic property and catalytic activity of heteropoly acid catalyst on ETBE synthesis as a gasoline octane enhancer were investigated. The amount of pyridine adsorbed on heteropoly acid catalyst and catalytic activity in the synthesis of ETBE showed a good correlation. But ammonia failed to show such a correlation because of the complex formation of ammonia adsorbed and transition metal ions. In the case of supported catalyst catalytic activity and product distribution were mainly affected by the adsorption characteristics of TBA or iso-butene.

  • PDF

Catalytic Performance of Ionic Liquids for the Cycloaddition of Carbon Dioxide and Butyl Glycidyl Ether (부틸글리시딜에테르와 이산화탄소의 부가반응에 대한 이온성 액체의 촉매 성능 고찰)

  • Park, Dae-Won;Ju, Hye-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.469-476
    • /
    • 2008
  • The synthesis of cyclic carbonate from butyl glycidyl ether (BGE) and carbon dioxide was performed in the presence of three different types of ionic liquid : quarternary ammonium salt, alkyl pyridinium salt, and alkylimidazolium salt. Ionic liquids of different alkyl groups ($C_3$, $C_4$, $C_6$ and $C_8$) and anions ($Cl^-$, $Br^-$ and $I^-$) were used for the reaction which was carried out in a batch autoclave reactor at $60{\sim}120^{\circ}C$. The catalytic activity was increased with increasing alkyl chain length in the order of $C_3$ < $C_4$ < $C_6$. But the ionic liquid with longer alkyl chain length ($C_8$) decreased the conversion of BGE because it is too bulky to form an intermediate with BGE. For the counter anion of the ionic liquid catalysts, the BGE conversion decreased in the order $Cl^-$ > $Br^-$ > $I^-$.

EXPERIMENTAL STUDY ON EMISSION CHARACTERISTICS AND ANALYSIS BY VARIOUS OXYGENATED FUELS IN A D.I. DIESEL ENGINE

  • CHOI S. H.;OH Y. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.197-203
    • /
    • 2005
  • This paper investigates the effect of oxygen composition in mixed fuel on the exhaust emissions for the direct injection diesel engine. These effects were tested to estimate the change in engine performance and exhaust emission characteristics when commercial diesel fuel and oxygenates blended fuels at a certain fuel and mixed ratio are used. Individual hydrocarbons $(C_1-C_6)$ in exhaust gases, as well as the total amount of hydrocarbons, were analyzed by using gas chromatography to find the mechanism by which smoke emission was remarkably reduced for various oxygenated fuels. The chromatograms between a diesel fuel and a diesel fuel blended DGM (diethylene glycol dimethyl ether), MTBE (methyl tert-butyl ether) and EGBE (ethylene glycol mono-n-butyl ether) were compared. The results showed that the number of individual hydrocarbons as well as the total number of hydrocarbons of oxygenated fuel reduced more remarkably than those of diesel fuel.

An Experimental Study on Exhaust Emission Characteristics by Various Oxygenated Additives in Diesel Engine (디젤기관에서 다종 함산소연료 첨가에 의한 배기배출물 특성에 관한 실험적 연구)

  • 오영택;최승훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.101-110
    • /
    • 2002
  • In this paper, the effects of oxygen component in blended fuel on the exhaust emissions have been investigated far direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for th? commercial diesel fuel and oxygenated blended fuels which have three kinds of fuels and various mixed rates. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbons(C$_1$∼ C$\_$6/) in exhaust gases using gas chromatography to seek the reason far remarkable reduction of smoke emission on various oxygenated fuels. This study carried out by comparing the chromatogram with diesel fuel and diesel fuel blended DGM(diethylene glycol dimethyl ether), MTBE(methyl tart-butyl ether) and EGBE(ethylene glycol mono-n-butyl ether). The results of this study show that individual hydrocarbons as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with commercial diesel fuel.

The Effect of Cooled EGR and Oxygenate Fuel(EGBE) on the Diesel Engine Performance and Emissions (함산소연료(EGBE)와 Cooled EGR이 디젤기관의 성능과 배기배출물에 미치는 영향)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.79-86
    • /
    • 2003
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated fur direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has seven kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission and unburned hydrocarbons of EGBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.