• Title/Summary/Keyword: Butterfly valves

Search Result 37, Processing Time 0.021 seconds

A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve (Cone Type 밸브 내부유동 수치해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

Flow Rate Control System Design for the Industrial Valve (산업용 밸브의 유량제어 시스템 설계)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.387-392
    • /
    • 2020
  • This paper proposes a flow-rate control system for industrial valves. Industrial valves are used in piping systems to control the flow rate and pressure. In general, valves used in pipelines are classified into globe valves, butterfly valves, and ball valves according to the shape. Motor, hydraulic, and pneumatic systems are used for operating valves. The flow meter should measure the flow rate when configuring the flow-rate control system. On the other hand, because the flow rate of the valve can be expressed by flow coefficient, a control scheme is proposed using the pressure deviation, which measures at the front and rear of the valve. The transfer function for the valve, according to the control input, was estimated using the signal compression method. Based on the induced transfer function, the disturbance observer was designed to improve the command following the performance of the valve stem. The performance of the proposed control method is compared with the flow-rate control result using the flow meter used.

Development on the Structural Analysis Code of the Air-Operated Valve (공기구동 밸브의 구조해석 코드개발)

  • Lee Hyun-Seung;Lee Young-Shin;Cho Taik-Dong;Ko Sung-Ho;Shin Sung-Ky;Lee Ho-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.575-580
    • /
    • 2006
  • Air-operated valves are extensively used for process control and system isolation functions in nuclear power plant, where the safety is primary issue. The purpose of this study is to develop structural analysis code of various air-operated valves such as globe valve, gate valve, and butterfly valve. The thrust formula is derived for valve with the expected weak areas. The expected weak areas are referred from EPRI data. The structural stress analysis is carried out by analytical and commercial FEM code, ANSYS 8.0. The numerical results are compared together and verified on program procedures.

  • PDF

Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test (통계적 가설검정을 이용한 중심형 버터플라이 밸브의 신뢰성 평가)

  • Chang, Mu-Seong;Choi, Jong-Sik;Choi, Byung-Oh;Kim, Do-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1305-1311
    • /
    • 2015
  • A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and $B_{10}$ life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

Theoretical Seismic Analysis of Butterfly Valve for Nuclear Power Plant (원자력 발전소용 버터플라이밸브의 내진해석)

  • Han, Sang-Uk;Ahn, Jun-Tae;Lee, Kyung-Chul;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1009-1015
    • /
    • 2012
  • Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been performed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135 MPa. In addition, the result of dynamic analysis gave an applied stress of 183 MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

A Study on Relationship of Flow coefficient and Valve Type for Design of Butterfly Valve (버터플라이 밸브 설계를 위한 밸브 형과 유량 계수와의 관계)

  • Oh, Seung-Hwan;Lee, Young-Hun;Kang, Hyeung-Geol;Song, Hak-Guan;Kang, Jung-Ho;Park, Young-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.49-53
    • /
    • 2007
  • The valve is used on control of flow in a ship. Flow coefficient of valve is very importance in the design of valve. In this paper, three-dimensional computer simulations by commercial code CFX were conducted to observe the valve type and to measure flow coefficient when valves with various angles and uniform incoming velocity were used in a piping system. By contrast, a group of experimental data is used to compare with the data obtained by CFX simulation to investigate the validity of numerical method.