DOI QR코드

DOI QR Code

Theoretical Seismic Analysis of Butterfly Valve for Nuclear Power Plant

원자력 발전소용 버터플라이밸브의 내진해석

  • Received : 2011.12.29
  • Accepted : 2012.01.15
  • Published : 2012.09.01

Abstract

Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been performed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135 MPa. In addition, the result of dynamic analysis gave an applied stress of 183 MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

밸브는 지진하중 하에서 구조안전성이 요구되는 원자력 발전소 파이프 라인 시스템에 설치되는 중요한 장비 중 하나이다. 밸브의 성능향상을 위한 형상최적설계에서 지진하중조건을 고려한 밸브의 구조안전성 검증이 반드시 필요하다. 최근, 이론적인 내진검증 기법과 절차가 체계화되어 있어 지진하중하에서 설계조건을 만족하는 대상체의 적절한 설계변수가 이론적으로 얻어지고 있다. 본 연구에서는 원자력 발전소용 200A 버터플라이밸브를 대상으로 KEPIC MFA 에서 제시하고 있는 이론적인 정적내진해석과 동적내진해석 절차를 통하여 내진검증을 수치해석기법과 실험을 병행하여 수행하였다. 자중, 운전조건 및 안전정지지진하중 조건을 모두 고려한 정적내진해석을 통해 밸브의 스템과 바디 접촉부에 작용하는 최대 작용응력이 135MPa 으로 도출되었다. 또한 동적내진해석시 적용한 응답스펙트럼 해석법과 모드조합법으로 계산된 최대응력은 183MPa 이었다. 이는 밸브 소재의 허용강도 대비 안전계수가 1.7 및 1.3 수준임을 확인하였다.

Keywords

References

  1. Kim, C. S. and Lee, S. H., 2010, "The Economic Effects of Nuclear Power Generation Using CGE Model," Korean Energy Economic Review, Vol. 9, No. 2, pp. 129-152
  2. Lee, J. K., Kim, J. Y. and Rhee, H. N., 2002, "Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6,"Proceeding of 2002 Spring annual Meeting of the KSME, Vol. 26, No. 1, pp. 1376-1383.
  3. Hwang, K. M. and Jang, J. B., 2005, "Seismic Qualification of a Control Valve for Nuclear Power Plant," Conference of KSCE, pp. 1819-1822.
  4. KEPIC MFA, 2005, Korea Electric Power Industry Code.
  5. Kim, H. T. and Lee, Y. S., 2011, "Seismic and Structure Analysis of a Temporary Rack Construction in a Nuclear Power Plant," Trans. of the KSME(A), Vol. 35, No. 10, pp. 1265-1271.
  6. ANSYS Workbench, Release 12.0, 2009, www.ansys.com.
  7. KEPIC END, 2005, Korea Electric Power Industry Code.
  8. Chung, C. S., 2000, "Seismic Evaluation for Strainer in the Primary Cooling System," Journal of the Computational Structural Engineering Institute of Korea, Vol. 13, No. 3, pp. 295-304.
  9. Lee, J. K., Kim, J. Y. and Chung, P. J., 2001, "Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6," Trans. of the KSME(A), Vol. 26, No.7, pp. 1376-1383 https://doi.org/10.3795/KSME-A.2002.26.7.1376
  10. Lee, W. H., Cho, J. R., Roh, M. D. and Ryu, J. H.,2011, "Seismic Analysis of Nuclear Power Equipment Related to Design," Trans. of the KSME(A), Vol. 35, No.3, pp. 317-323. https://doi.org/10.3795/KSME-A.2011.35.3.317
  11. Kim, S. J., Lee, Y. S., Ryu, C. H., Yang, K. H. and Jung, S. H., 2001, "Seismic Analysis of Rack Structure with Fluid-Structure Interaction," Proceedings of 2001 Fall Annual Meeting of the KSME, Vol. A, pp 465-470.

Cited by

  1. Structural Design Optimization of a Vertical Axis Wind Turbine for Seismic Qualification and Lightweight vol.04, pp.03, 2016, https://doi.org/10.4236/wjet.2016.43D019