Lately, there have been tremendous shifts in the business technology landscape. Advances in cloud technology and mobile applications have enabled businesses and IT users to interact in entirely new ways. One of the most rapidly growing technologies in this sphere is business intelligence, and associated concepts such as big data and data mining. BI is the collection of systems and products that have been implemented in various business practices, but not the information derived from the systems and products. On the other hand, big data has come to mean various things to different people. When comparing big data vs business intelligence, some people use the term big data when referring to the size of data, while others use the term in reference to specific approaches to analytics. As the volume of data grows, businesses will also ask more questions to better understand the data analytics process. As a result, the analysis team will have to keep up with the rising demands on the infrastructure that supports analytics applications brought by these additional requirements. It's also a good way to ascertain if we have built a valuable analysis system. Thus, Business Intelligence and Big Data technology can be adapted to the business' changing requirements, if they prove to be highly valuable to business environment.
Data dictionary is a collection of meta-data, which describes data produced and consumed while performing business processes. Data dictionary is an essential element for business process standardization and automation, and has a fundamental role in ERP application management and customization. Also, data dictionary facilitates B2B processes by enabling painless integration of business processes between various enterprises. We implemented data dictionary support in SEA+, a component- based scalable ERP system developed in ETRI, and found out that it's a plausible feature of business information system. We discovered that data dictionary promotes semantic, not syntactic, data management, which can make it possible to leverage viability of the tool in the coming age of more meta-data oriented computing world. We envision that business data dictionary is a firm foundation of adapting business knowledge, applications and processes into the semantic web based enterprise infra-structure.
Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to guarantee successful termination of business processes at the design phase. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.
We live in the digital era, and the characteristics of our customers in the digital era are constantly changing. That's why understanding business requirements and converting them to technical requirements is essential, and you have to understand the data model behind the business layout. Moreover, BI(Business Intelligence) is at the crux of revolutionizing enterprise to minimize losses and maximize profits. In this paper, we have described a leading study about the situation of desk-top BI(software product & programming language) in aspect of front-end side and the Data Lake platform based on Big Data by data modeling in aspect of back-end side to support the business intelligence.
e-비즈니스의 활성화로 기업과 조직에서 이해당사자 간의 데이터 교환이 활발해 짐에 따라, 신뢰성 있는 데이터의 확보 및 관리가 시급한 과제로 떠오르고 있다. 이러한 문제를 해결하기 위해, 본 논문은 데이터의 품질을 체계적으로 관리할 수 있는 프레임워크를 시나리오와 함께 제시한다. 데이터 품질 관리 프레임워크는 데이터 품질 모니터링, 데이터 품질 개선, 데이터 활용의 3단계로 구분되어 있으며 각 단계마다 3개씩, 총 9개의 프로세스로 구성되어 있다. 각 프로세스에는 필요성, 기능, 역할, 프로세스간의 관계가 명시되어 있다. 또한, 본 프레임워크를 현장에 직접 적용할 수 있도록, e-비즈니스에서 많이 사용되는 상품식별 및 분류 코드체계의 사례를 이용하여 업무 시나리오를 제시하였다.
Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to design processes to support uncertainties from internal or external environments. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.
Samina Saleem;Hussain Saleem;Abida Siddiqui;Umer Sheikh;Muhammad Asim;Jamshed Butt;Ali Muhammad Aslam
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.177-185
/
2024
Web science, a general discipline of learning is presently at high demand of expertise with ideas to develop software-based WebApps and MobileApps to facilitate user or customer demand e.g. shopping etc. electronically with the access at their smartphones benefitting the business enterprise as well. A worldwide-computerized reservation network is used as a single point of access for reserving airline seats, hotel rooms, rental cars, and other travel related items directly or via web-based travel agents or via online reservation sites with the advent of social-web, e-commerce, e-business, from anywhere-on-earth (AoE). This results in the accumulation of large and diverse distributed databases known as big data. This paper describes a novel intelligent web-based electronic booking framework for e-business with distributed computing and data mining support with the detail of e-business system flow for e-Booking application architecture design using the approaches for distributed computing and data mining tools support. Further, the importance of business intelligence and data analytics with issues and challenges are also discussed.
Purpose - The purpose of this study was to analyze cases of big data-driven business in the financial industry, focusing on organizational structure and business processes using big data in banking industry. Design/methodology/approach - This study used a case study approach. To this end, cases of two banks implementing big data-driven business were collected and analyzed. Findings - There are two things in common between the two cases. One is that the central tasks for big data-driven business are performed by a centralized organization. The other is that the role distribution and work collaboration between the headquarters and business departments are well established. On the other hand, there are two differences between the two banks. One marketing campaign is led by the headquarters and the other marketing campaign is led by the business departments. The two banks differ in how they carry out marketing campaigns and how they carry out big data-related tasks. Research implications or Originality - When banks plan and implement big data-driven business, the common aspects of the two banks analyzed through this case study can be fully referenced when creating an organization and process. In addition, it will be necessary to create an organizational structure and work process that best fit the special situation considering the company's environment or capabilities.
비즈니스 데이터란 회사 업무 진행 과정 중에 생성, 저장, 이용, 전달되는 모든 온오프라인 형태의 문서 및 전자적 데이터를 의미하며, 영업, 조직, 매출, 마케팅, 배송 관련된 모든 데이터를 의미한다. 대부분의 회사에는 사내 문서 생성 및 보안 관리 가이드에 의거하여 비밀, 대외비의 등급은 이미 존재하나, 실제 사용하고 있는 비즈니스 데이터를 상세히 분석하여 반영할 수 있는 의사결정 기준 수립이 미흡하다. 본 논문에서는 비즈니스 데이터를 분류할 수 있는 정성적, 정량적인 기준(평가 지표)을 수립하기 위한 비즈니스 데이터 decision matrix를 설계할 수 있는 방안을 제시하고, 각 등급별로 보호할 수 있는 기준을 제시해보고자 한다.
Mostafa Zaki, HUSSEIN;Samhi Abdelaty, DIFALLA;Hussein Abdelaal, SALEM
The Journal of Asian Finance, Economics and Business
/
제10권2호
/
pp.15-27
/
2023
The purpose of this research is to investigate the impact of Business Intelligence (BI) on the relation between Big Data Analytics (BDA) and Financial Performance (FP), at the beginning we reviewed the academic accounting and finance literature to develop the theoretical framework of business intelligence, big data and financial performance in terms of definition, motivations and theories, then we conduct an empirical analysis based on questionnaire-base survey data collected. The researchers identified the study population in the joint-stock companies listed on the Egyptian Stock Exchange and operating in the sectors and activities related to modern technologies in information systems, big data analytics, and business intelligence, in addition to the auditing offices that review the financial reports of these companies, and The sector closest to the research objective is the communications, media, and information technology sector, where the survey list was distributed among the sample companies with (15) lists for each company, and (15) lists for each audit office, so that the total sample becomes (120) individuals (with a response rate 83.3%), The results show, First, Big data analytics significantly affect organizations' financial performance, second, Business intelligence mediates (partial) the relationship between big data analytics and financial performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.