• Title/Summary/Keyword: Business Relationship

Search Result 6,291, Processing Time 0.032 seconds

The Impact of Conflict and Influence Strategies Between Local Korean-Products-Selling Retailers and Wholesalers on Performance in Chinese Electronics Distribution Channels: On Moderating Effects of Relational Quality (중국 가전유통경로에서 한국제품 현지 판매업체와 도매업체간 갈등 및 영향전략이 성과에 미치는 영향: 관계 질의 조절효과)

  • Chun, Dal-Young;Kwon, Joo-Hyung;Lee, Guo-Ming
    • Journal of Distribution Research
    • /
    • v.16 no.3
    • /
    • pp.1-32
    • /
    • 2011
  • I. Introduction: In Chinese electronics industry, the local wholesalers are still dominant but power is rapidly swifting from wholesalers to retailers because in recent foreign big retailers and local mass merchandisers are growing fast. During such transient period, conflicts among channel members emerge important issues. For example, when wholesalers who have more power exercise influence strategies to maintain status, conflicts among manufacturer, wholesaler, and retailer will be intensified. Korean electronics companies in China need differentiated channel strategies by dealing with wholesalers and retailers simultaneously to sell more Korean products in competition with foreign firms. For example, Korean electronics firms should utilize 'guanxi' or relational quality to form long-term relationships with whloesalers instead of power and conflict issues. The major purpose of this study is to investigate the impact of conflict, dependency, and influence strategies between local Korean-products-selling retailers and wholesalers on performance in Chinese electronics distribution channels. In particular, this paper proposes effective distribution strategies for Korean electronics companies in China by analyzing moderating effects of 'Guanxi'. II. Literature Review and Hypotheses: The specific purposes of this study are as follows. First, causes of conflicts between local Korean-products-selling retailers and wholesalers are examined from the perspectives of goal incongruence and role ambiguity and then effects of these causes are found out on perceived conflicts of local retailers. Second, the effects of dependency of local retailers upon wholesalers are investigated on local retailers' perceived conflicts. Third, the effects of non-coercive influence strategies such as information exchange and recommendation and coercive strategies such as threats and legalistic pleas exercised by wholesalers are explored on perceived conflicts by local retailers. Fourth, the effects of level of conflicts perceived by local retailers are verified on local retailers' financial performance and satisfaction. Fifth, moderating effects of relational qualities, say, 'quanxi' between wholesalers and retailers are analyzed on the impact of wholesalers' influence strategies on retailers' performances. Finally, moderating effects of relational qualities are examined on the relationship between conflicts and performance. To accomplish above-mentioned research objectives, Figure 1 and the following research hypotheses are proposed and verified. III. Measurement and Data Analysis: To verify the proposed research model and hypotheses, data were collected from 97 retailers who are selling Korean electronic products located around Central and Southern regions in China. Covariance analysis and moderated regression analysis were employed to validate hypotheses. IV. Conclusion: The following results were drawn using structural equation modeling and hierarchical moderated regression. First, goal incongruence perceived by local retailers significantly affected conflict but role ambiguity did not. Second, consistent with conflict spiral theory, the level of conflict decreased when retailers' dependency increased toward wholesalers. Third, noncoercive influence strategies such as information exchange and recommendation implemented by wholesalers had significant effects on retailers' performance such as sales and satisfaction without conflict. On the other hand, coercive influence strategies such as threat and legalistic plea had insignificant effects on performance in spite of increasing the level of conflict. Fourth, 'guanxi', namely, relational quality between local retailers and wholesalers showed unique effects on performance. In case of noncoercive influence strategies, 'guanxi' did not play a role of moderator. Rather, relational quality and noncoercive influence strategies can serve as independent variables to enhance performance. On the other hand, when 'guanxi' was well built due to mutual trust and commitment, relational quality as a moderator can positively function to improve performance even though hostile, coercive influence strategies were implemented. Fifth, 'guanxi' significantly moderated the effects of conflict on performance. Even if conflict arises, local retailers who form solid relational quality can increase performance by dealing with dysfunctional conflict synergistically compared with low 'quanxi' retailers. In conclusion, this study verified the importance of relational quality via 'quanxi' between local retailers and wholesalers in Chinese electronic industry because relational quality could cross out the adverse effects of coercive influence strategies and conflict on performance.

  • PDF

An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining (사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구)

  • Lee, Hyung Il;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.47-73
    • /
    • 2020
  • KTX rolling stocks are a system consisting of several machines, electrical devices, and components. The maintenance of the rolling stocks requires considerable expertise and experience of maintenance workers. In the event of a rolling stock failure, the knowledge and experience of the maintainer will result in a difference in the quality of the time and work to solve the problem. So, the resulting availability of the vehicle will vary. Although problem solving is generally based on fault manuals, experienced and skilled professionals can quickly diagnose and take actions by applying personal know-how. Since this knowledge exists in a tacit form, it is difficult to pass it on completely to a successor, and there have been studies that have developed a case-based rolling stock expert system to turn it into a data-driven one. Nonetheless, research on the most commonly used KTX rolling stock on the main-line or the development of a system that extracts text meanings and searches for similar cases is still lacking. Therefore, this study proposes an intelligence supporting system that provides an action guide for emerging failures by using the know-how of these rolling stocks maintenance experts as an example of problem solving. For this purpose, the case base was constructed by collecting the rolling stocks failure data generated from 2015 to 2017, and the integrated dictionary was constructed separately through the case base to include the essential terminology and failure codes in consideration of the specialty of the railway rolling stock sector. Based on a deployed case base, a new failure was retrieved from past cases and the top three most similar failure cases were extracted to propose the actual actions of these cases as a diagnostic guide. In this study, various dimensionality reduction measures were applied to calculate similarity by taking into account the meaningful relationship of failure details in order to compensate for the limitations of the method of searching cases by keyword matching in rolling stock failure expert system studies using case-based reasoning in the precedent case-based expert system studies, and their usefulness was verified through experiments. Among the various dimensionality reduction techniques, similar cases were retrieved by applying three algorithms: Non-negative Matrix Factorization(NMF), Latent Semantic Analysis(LSA), and Doc2Vec to extract the characteristics of the failure and measure the cosine distance between the vectors. The precision, recall, and F-measure methods were used to assess the performance of the proposed actions. To compare the performance of dimensionality reduction techniques, the analysis of variance confirmed that the performance differences of the five algorithms were statistically significant, with a comparison between the algorithm that randomly extracts failure cases with identical failure codes and the algorithm that applies cosine similarity directly based on words. In addition, optimal techniques were derived for practical application by verifying differences in performance depending on the number of dimensions for dimensionality reduction. The analysis showed that the performance of the cosine similarity was higher than that of the dimension using Non-negative Matrix Factorization(NMF) and Latent Semantic Analysis(LSA) and the performance of algorithm using Doc2Vec was the highest. Furthermore, in terms of dimensionality reduction techniques, the larger the number of dimensions at the appropriate level, the better the performance was found. Through this study, we confirmed the usefulness of effective methods of extracting characteristics of data and converting unstructured data when applying case-based reasoning based on which most of the attributes are texted in the special field of KTX rolling stock. Text mining is a trend where studies are being conducted for use in many areas, but studies using such text data are still lacking in an environment where there are a number of specialized terms and limited access to data, such as the one we want to use in this study. In this regard, it is significant that the study first presented an intelligent diagnostic system that suggested action by searching for a case by applying text mining techniques to extract the characteristics of the failure to complement keyword-based case searches. It is expected that this will provide implications as basic study for developing diagnostic systems that can be used immediately on the site.

Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization (완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법)

  • Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.125-148
    • /
    • 2018
  • Recently, as the demand for big data analysis increases, cases of analyzing unstructured data and using the results are also increasing. Among the various types of unstructured data, text is used as a means of communicating information in almost all fields. In addition, many analysts are interested in the amount of data is very large and relatively easy to collect compared to other unstructured and structured data. Among the various text analysis applications, document classification which classifies documents into predetermined categories, topic modeling which extracts major topics from a large number of documents, sentimental analysis or opinion mining that identifies emotions or opinions contained in texts, and Text Summarization which summarize the main contents from one document or several documents have been actively studied. Especially, the text summarization technique is actively applied in the business through the news summary service, the privacy policy summary service, ect. In addition, much research has been done in academia in accordance with the extraction approach which provides the main elements of the document selectively and the abstraction approach which extracts the elements of the document and composes new sentences by combining them. However, the technique of evaluating the quality of automatically summarized documents has not made much progress compared to the technique of automatic text summarization. Most of existing studies dealing with the quality evaluation of summarization were carried out manual summarization of document, using them as reference documents, and measuring the similarity between the automatic summary and reference document. Specifically, automatic summarization is performed through various techniques from full text, and comparison with reference document, which is an ideal summary document, is performed for measuring the quality of automatic summarization. Reference documents are provided in two major ways, the most common way is manual summarization, in which a person creates an ideal summary by hand. Since this method requires human intervention in the process of preparing the summary, it takes a lot of time and cost to write the summary, and there is a limitation that the evaluation result may be different depending on the subject of the summarizer. Therefore, in order to overcome these limitations, attempts have been made to measure the quality of summary documents without human intervention. On the other hand, as a representative attempt to overcome these limitations, a method has been recently devised to reduce the size of the full text and to measure the similarity of the reduced full text and the automatic summary. In this method, the more frequent term in the full text appears in the summary, the better the quality of the summary. However, since summarization essentially means minimizing a lot of content while minimizing content omissions, it is unreasonable to say that a "good summary" based on only frequency always means a "good summary" in its essential meaning. In order to overcome the limitations of this previous study of summarization evaluation, this study proposes an automatic quality evaluation for text summarization method based on the essential meaning of summarization. Specifically, the concept of succinctness is defined as an element indicating how few duplicated contents among the sentences of the summary, and completeness is defined as an element that indicating how few of the contents are not included in the summary. In this paper, we propose a method for automatic quality evaluation of text summarization based on the concepts of succinctness and completeness. In order to evaluate the practical applicability of the proposed methodology, 29,671 sentences were extracted from TripAdvisor 's hotel reviews, summarized the reviews by each hotel and presented the results of the experiments conducted on evaluation of the quality of summaries in accordance to the proposed methodology. It also provides a way to integrate the completeness and succinctness in the trade-off relationship into the F-Score, and propose a method to perform the optimal summarization by changing the threshold of the sentence similarity.

New Insights on Mobile Location-based Services(LBS): Leading Factors to the Use of Services and Privacy Paradox (모바일 위치기반서비스(LBS) 관련한 새로운 견해: 서비스사용으로 이끄는 요인들과 사생활염려의 모순)

  • Cheon, Eunyoung;Park, Yong-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.33-56
    • /
    • 2017
  • As Internet usage is becoming more common worldwide and smartphone become necessity in daily life, technologies and applications related to mobile Internet are developing rapidly. The results of the Internet usage patterns of consumers around the world imply that there are many potential new business opportunities for mobile Internet technologies and applications. The location-based service (LBS) is a service based on the location information of the mobile device. LBS has recently gotten much attention among many mobile applications and various LBSs are rapidly developing in numerous categories. However, even with the development of LBS related technologies and services, there is still a lack of empirical research on the intention to use LBS. The application of previous researches is limited because they focused on the effect of one particular factor and had not shown the direct relationship on the intention to use LBS. Therefore, this study presents a research model of factors that affect the intention to use and actual use of LBS whose market is expected to grow rapidly, and tested it by conducting a questionnaire survey of 330 users. The results of data analysis showed that service customization, service quality, and personal innovativeness have a positive effect on the intention to use LBS and the intention to use LBS has a positive effect on the actual use of LBS. These results implies that LBS providers can enhance the user's intention to use LBS by offering service customization through the provision of various LBSs based on users' needs, improving information service qualities such as accuracy, timeliness, sensitivity, and reliability, and encouraging personal innovativeness. However, privacy concerns in the context of LBS are not significantly affected by service customization and personal innovativeness and privacy concerns do not significantly affect the intention to use LBS. In fact, the information related to users' location collected by LBS is less sensitive when compared with the information that is used to perform financial transactions. Therefore, such outcomes on privacy concern are revealed. In addition, the advantages of using LBS are more important than the sensitivity of privacy protection to the users who use LBS than to the users who use information systems such as electronic commerce that involves financial transactions. Therefore, LBS are recommended to be treated differently from other information systems. This study is significant in the theoretical point of contribution that it proposed factors affecting the intention to use LBS in a multi-faceted perspective, proved the proposed research model empirically, brought new insights on LBS, and broadens understanding of the intention to use and actual use of LBS. Also, the empirical results of the customization of LBS affecting the user's intention to use the LBS suggest that the provision of customized LBS services based on the usage data analysis through utilizing technologies such as artificial intelligence can enhance the user's intention to use. In a practical point of view, the results of this study are expected to help LBS providers to develop a competitive strategy for responding to LBS users effectively and lead to the LBS market grows. We expect that there will be differences in using LBSs depending on some factors such as types of LBS, whether it is free of charge or not, privacy policies related to LBS, the levels of reliability related application and technology, the frequency of use, etc. Therefore, if we can make comparative studies with those factors, it will contribute to the development of the research areas of LBS. We hope this study can inspire many researchers and initiate many great researches in LBS fields.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

An Empirical Study on Motivation Factors and Reward Structure for User's Createve Contents Generation: Focusing on the Mediating Effect of Commitment (창의적인 UCC 제작에 영향을 미치는 동기 및 보상 체계에 대한 연구: 몰입에 매개 효과를 중심으로)

  • Kim, Jin-Woo;Yang, Seung-Hwa;Lim, Seong-Taek;Lee, In-Seong
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.141-170
    • /
    • 2010
  • User created content (UCC) is created and shared by common users on line. From the user's perspective, the increase of UCCs has led to an expansion of alternative means of communications, while from the business perspective UCCs have formed an environment in which an abundant amount of new contents can be produced. Despite outward quantitative growth, however, many aspects of UCCs do not meet the expectations of general users in terms of quality, and this can be observed through pirated contents and user-copied contents. The purpose of this research is to investigate effective methods for fostering production of creative user-generated content. This study proposes two core elements, namely, reward and motivation, which are believed to enhance content creativity as well as the mediating factor and users' committement, which will be effective for bridging the increasing motivation and content creativity. Based on this perspective, this research takes an in-depth look at issues related to constructing the dimensions of reward and motivation in UCC services for creative content product, which are identified in three phases. First, three dimensions of rewards have been proposed: task dimension, social dimension, and organizational dimention. The task dimension rewards are related to the inherent characteristics of a task such as writing blog articles and pasting photos. Four concrete ways of providing task-related rewards in UCC environments are suggested in this study, which include skill variety, task significance, task identity, and autonomy. The social dimensioni rewards are related to the connected relationships among users. The organizational dimension consists of monetary payoff and recognition from others. Second, the two types of motivations are suggested to be affected by the diverse rewards schemes: intrinsic motivation and extrinsic motivation. Intrinsic motivation occurs when people create new UCC contents for its' own sake, whereas extrinsic motivation occurs when people create new contents for other purposes such as fame and money. Third, commitments are suggested to work as important mediating variables between motivation and content creativity. We believe commitments are especially important in online environments because they have been found to exert stronger impacts on the Internet users than other relevant factors do. Two types of commitments are suggested in this study: emotional commitment and continuity commitment. Finally, content creativity is proposed as the final dependent variable in this study. We provide a systematic method to measure the creativity of UCC content based on the prior studies in creativity measurement. The method includes expert evaluation of blog pages posted by the Internet users. In order to test the theoretical model of our study, 133 active blog users were recruited to participate in a group discussion as well as a survey. They were asked to fill out a questionnaire on their commitment, motivation and rewards of creating UCC contents. At the same time, their creativity was measured by independent experts using Torrance Tests of Creative Thinking. Finally, two independent users visited the study participants' blog pages and evaluated their content creativity using the Creative Products Semantic Scale. All the data were compiled and analyzed through structural equation modeling. We first conducted a confirmatory factor analysis to validate the measurement model of our research. It was found that measures used in our study satisfied the requirement of reliability, convergent validity as well as discriminant validity. Given the fact that our measurement model is valid and reliable, we proceeded to conduct a structural model analysis. The results indicated that all the variables in our model had higher than necessary explanatory powers in terms of R-square values. The study results identified several important reward shemes. First of all, skill variety, task importance, task identity, and automony were all found to have significant influences on the intrinsic motivation of creating UCC contents. Also, the relationship with other users was found to have strong influences upon both intrinsic and extrinsic motivation. Finally, the opportunity to get recognition for their UCC work was found to have a significant impact on the extrinsic motivation of UCC users. However, different from our expectation, monetary compensation was found not to have a significant impact on the extrinsic motivation. It was also found that commitment was an important mediating factor in UCC environment between motivation and content creativity. A more fully mediating model was found to have the highest explanation power compared to no-mediation or partially mediated models. This paper ends with implications of the study results. First, from the theoretical perspective this study proposes and empirically validates the commitment as an important mediating factor between motivation and content creativity. This result reflects the characteristics of online environment in which the UCC creation activities occur voluntarily. Second, from the practical perspective this study proposes several concrete reward factors that are germane to the UCC environment, and their effectiveness to the content creativity is estimated. In addition to the quantitive results of relative importance of the reward factrs, this study also proposes concrete ways to provide the rewards in the UCC environment based on the FGI data that are collected after our participants finish asnwering survey questions. Finally, from the methodological perspective, this study suggests and implements a way to measure the UCC content creativity independently from the content generators' creativity, which can be used later by future research on UCC creativity. In sum, this study proposes and validates important reward features and their relations to the motivation, commitment, and the content creativity in UCC environment, which is believed to be one of the most important factors for the success of UCC and Web 2.0. As such, this study can provide significant theoretical as well as practical bases for fostering creativity in UCC contents.

An Empirical Study on Perceived Value and Continuous Intention to Use of Smart Phone, and the Moderating Effect of Personal Innovativeness (스마트폰의 지각된 가치와 지속적 사용의도, 그리고 개인 혁신성의 조절효과)

  • Han, Joonhyoung;Kang, Sungbae;Moon, Taesoo
    • Asia pacific journal of information systems
    • /
    • v.23 no.4
    • /
    • pp.53-84
    • /
    • 2013
  • With rapid development of ICT (Information and Communications Technology), new services by the convergence of mobile network and application technology began to appear. Today, smart phone with new ICT convergence network capabilities is exceedingly popular and very useful as a new tool for the development of business opportunities. Previous studies based on Technology Acceptance Model (TAM) suggested critical factors, which should be considered for acquiring new customers and maintaining existing users in smart phone market. However, they had a limitation to focus on technology acceptance, not value based approach. Prior studies on customer's adoption of electronic utilities like smart phone product showed that the antecedents such as the perceived benefit and the perceived sacrifice could explain the causality between what is perceived and what is acquired over diverse contexts. So, this research conceptualizes perceived value as a trade-off between perceived benefit and perceived sacrifice, and we need to research the perceived value to grasp user's continuous intention to use of smart phone. The purpose of this study is to investigate the structured relationship between benefit (quality, usefulness, playfulness) and sacrifice (technicality, cost, security risk) of smart phone users, perceived value, and continuous intention to use. In addition, this study intends to analyze the differences between two subgroups of smart phone users by the degree of personal innovativeness. Personal innovativeness could help us to understand the moderating effect between how perceptions are formed and continuous intention to use smart phone. This study conducted survey through e-mail, direct mail, and interview with smart phone users. Empirical analysis based on 330 respondents was conducted in order to test the hypotheses. First, the result of hypotheses testing showed that perceived usefulness among three factors of perceived benefit has the highest positive impact on perceived value, and then followed by perceived playfulness and perceived quality. Second, the result of hypotheses testing showed that perceived cost among three factors of perceived sacrifice has significantly negative impact on perceived value, however, technicality and security risk have no significant impact on perceived value. Also, the result of hypotheses testing showed that perceived value has significant direct impact on continuous intention to use of smart phone. In this regard, marketing managers of smart phone company should pay more attention to improve task efficiency and performance of smart phone, including rate systems of smart phone. Additionally, to test the moderating effect of personal innovativeness, this research conducted multi-group analysis by the degree of personal innovativeness of smart phone users. In a group with high level of innovativeness, perceived usefulness has the highest positive influence on perceived value than other factors. Instead, the analysis for a group with low level of innovativeness showed that perceived playfulness was the highest positive factor to influence perceived value than others. This result of the group with high level of innovativeness explains that innovators and early adopters are able to cope with higher level of cost and risk, and they expect to develop more positive intentions toward higher performance through the use of an innovation. Also, hedonic behavior in the case of the group with low level of innovativeness aims to provide self-fulfilling value to the users, in contrast to utilitarian perspective, which aims to provide instrumental value to the users. However, with regard to perceived sacrifice, both groups in general showed negative impact on perceived value. Also, the group with high level of innovativeness had less overall negative impact on perceived value compared to the group with low level of innovativeness across all factors. In both group with high level of innovativeness and with low level of innovativeness, perceived cost has the highest negative influence on perceived value than other factors. Instead, the analysis for a group with high level of innovativeness showed that perceived technicality was the positive factor to influence perceived value than others. However, the analysis for a group with low level of innovativeness showed that perceived security risk was the second high negative factor to influence perceived value than others. Unlike previous studies, this study focuses on influencing factors on continuous intention to use of smart phone, rather than considering initial purchase and adoption of smart phone. First, perceived value, which was used to identify user's adoption behavior, has a mediating effect among perceived benefit, perceived sacrifice, and continuous intention to use smart phone. Second, perceived usefulness has the highest positive influence on perceived value, while perceived cost has significant negative influence on perceived value. Third, perceived value, like prior studies, has high level of positive influence on continuous intention to use smart phone. Fourth, in multi-group analysis by the degree of personal innovativeness of smart phone users, perceived usefulness, in a group with high level of innovativeness, has the highest positive influence on perceived value than other factors. Instead, perceived playfulness, in a group with low level of innovativeness, has the highest positive factor to influence perceived value than others. This result shows that early adopters intend to adopt smart phone as a tool to make their job useful, instead market followers intend to adopt smart phone as a tool to make their time enjoyable. In terms of marketing strategy for smart phone company, marketing managers should pay more attention to identify their customers' lifetime value by the phase of smart phone adoption, as well as to understand their behavior intention to accept the risk and uncertainty positively. The academic contribution of this study primarily is to employ the VAM (Value-based Adoption Model) as a conceptual foundation, compared to TAM (Technology Acceptance Model) used widely by previous studies. VAM is useful for understanding continuous intention to use smart phone in comparison with TAM as a new IT utility by individual adoption. Perceived value dominantly influences continuous intention to use smart phone. The results of this study justify our research model adoption on each antecedent of perceived value as a benefit and a sacrifice component. While TAM could be widely used in user acceptance of new technology, it has a limitation to explain the new IT adoption like smart phone, because of customer behavior intention to choose the value of the object. In terms of theoretical approach, this study provides theoretical contribution to the development, design, and marketing of smart phone. The practical contribution of this study is to suggest useful decision alternatives concerned to marketing strategy formulation for acquiring and retaining long-term customers related to smart phone business. Since potential customers are interested in both benefit and sacrifice when evaluating the value of smart phone, marketing managers in smart phone company has to put more effort into creating customer's value of low sacrifice and high benefit so that customers will continuously have higher adoption on smart phone. Especially, this study shows that innovators and early adopters with high level of innovativeness have higher adoption than market followers with low level of innovativeness, in terms of perceived usefulness and perceived cost. To formulate marketing strategy for smart phone diffusion, marketing managers have to pay more attention to identify not only their customers' benefit and sacrifice components but also their customers' lifetime value to adopt smart phone.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

The Effect of Perceived Shopping Value Dimensions on Attitude toward Store, Emotional Response to Store Shopping, and Store Loyalty (지각된 쇼핑가치차원이 점포태도, 쇼핑과정에서의 정서적 경험, 점포충성도에 미치는 영향에 관한 연구)

  • Ahn Kwang Ho;Lee Ha Neol
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.137-164
    • /
    • 2011
  • In the past, retailers secured customer loyalty by offering convenient locations, unique assortments of goods, better services than competitors, and good credit policy. All this has changed. Goods assortments among stores have become more alike as national-brand manufacturers place their goods in more and more retail stores. Service differentiation also has eroded. Many department stores have trimmed services, and many discount stores have increased theirs. Customers have become smarter shoppers. They don't pay more for identical brands, especially when service differences have diminished. In the face of increased competition from discount storess and specialty stores, department stores are waging a comeback war. Growth of intertype competition, competition between store-based and non-store-based retailing and growing investment in technology are changing the way consumers shop and retailers sell. Different types of stores-discount stores, catalog showrooms, department stores-all compete for the same consumers by carrying the same type of merchandise. The biggest winners are retailers that have helped shoppers to be economically cautious, simplified their increasingly busy and complicated lives, and provided an emotional connection. The growth of e-retailers has forced traditional brick-and-mortar retailers to respond. Basically brick-and-mortar retailers utilize their natural advantages, such as products that shoppers can actually see, touch, and test, real-life customer service, and no delivery lag time for small-sized purchases. They also provide a shopping experience as a strong differentiator. They are adopting practices as calling each shopper a "guest". The store atmosphere should match the basic motivations of the shopper. If target consumers are more likely to be in a task-oriented and functional mindset, then a simpler, more restrained in-store environment may be better. Consistent with this reasoning, some retailers of experiential products are creating in-store entertainment to attract customers who want fun and excitement. The retail experience must deliver value to turn a one-time visitor into a loyal customer. Retailers need a tool that measures the full range of components that define experience-based value. This study uses an experiential value scale(EVS) developed by Mathwick, Malhotra and Rigdon(2001) which reflects the benefits derived from perceptions of playfulness, aesthetics, customer "return on investment" and service excellence. EVS is useful to predict differences in shopping preferences and patronage behavior of customers. EVS consists of items measuring efficiency, economic value, visual appeal, entertainment value, service excellence, escapism, and intrinsic enjoyment, which are subscales of experiencial value. Efficiency, economic value, service excellence are linked to the utilitarian shopping value. And visual appeal, entertainment value, escapism and intrinsic enjoyment are linked to hedonic shopping value. It has been found that consumers value hedonic experiences activated from escapism and attractiveness of shopping environment as much as the product quality, price, and the convenient location. As a result, many department stores, discount stores, and other retailers are introducing differential marketing strategy based on emotional/hedonic values. Many researches suggest that consumers go shopping not only for buying products but also for various shopping experiences. In other words, they seek the practical, rational value as well as social, recreational values in the shopping process(Babin et al, 1994; Bloch et al, 1994). Retailers may enhance buyer's loyalty to store by providing excellent emotional/hedonic value such as the excitement from shopping, not just the practical value of buying good products efficiently. We investigate the effect of perceived shopping values on the emotional experience and store loyalty based on the EVS(Experiential Value Scales) developed by Holbrook(1994), Mathwick, Malhotra and Rigdon(2001). This study assumes that the relative effect of shopping value dimensions on the responses of shoppers will differ according to types of stores and analyzes the moderating effect of store type(department store VS. discount store) on the causal relationship between shopping value dimensions and store loyalty. Emprical results show that utilitarian values of shopping experience and hedonic value of shipping experience give the positive effect on the emotional response of consumers and store loyalty. We also found the moderating effect of store types. The effect of utilitarian shopping values on the attitude toward discount store is higher than the effect of utilitarian shopping values on the attitude toword department store. And the effect of hedonic shopping value on the emotional response to discount store is higher than on the emotional response to department store. The empirical results reflect on the recent trend that discount stores try to fulfill the hedonic needs of consumers as well as utilitarian needs(i.e, low price) that discount stores traditionally have focused on

  • PDF