• Title/Summary/Keyword: Business Model (BM)

Search Result 32, Processing Time 0.016 seconds

The Time-Varying Coefficient Fama - French Five Factor Model: A Case Study in the Return of Japan Portfolios

  • LIAMMUKDA, Asama;KHAMKONG, Manad;SAENCHAN, Lampang;HONGSAKULVASU, Napon
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, we have developed a Fama - French five factor model (FF5 model) from Fama & French (2015) by using concept of time-varying coefficient. For a data set, we have used monthly data form Kenneth R. French home page, it include Japan portfolios (classified by using size and book-to-market) and 5 factors from July 1990 to April 2020. The first analysis, we used Augmented Dickey-Fuller test (ADF test) for the stationary test, from the result, all Japan portfolios and 5 factors are stationary. Next analysis, we estimated a coefficient of Fama - French five factor model by using a generalized additive model with a thin-plate spline to create the time-varying coefficient Fama - French five factor model (TV-FF5 model). The benefit of this study is TV-FF5 model which can capture a different effect at different times of 5 factors but the traditional FF5 model can't do it. From the result, we can show a time-varying coefficient in all factors and in all portfolios, for time-varying coefficients of Rm-Rf, SMB, and HML are significant for all Japan portfolios, time-varying coefficients of RMW are positively significant for SM, and SH portfolio and time-varying coefficients of CMA are significant for SM, SH, and BM portfolio.

An Empirical Study for the Existence of Long-term Memory Properties and Influential Factors in Financial Time Series (주식가격변화의 장기기억속성 존재 및 영향요인에 대한 실증연구)

  • Eom, Cheol-Jun;Oh, Gab-Jin;Kim, Seung-Hwan;Kim, Tae-Hyuk
    • The Korean Journal of Financial Management
    • /
    • v.24 no.3
    • /
    • pp.63-89
    • /
    • 2007
  • This study aims at empirically verifying whether long memory properties exist in returns and volatility of the financial time series and then, empirically observing influential factors of long-memory properties. The presence of long memory properties in the financial time series is examined with the Hurst exponent. The Hurst exponent is measured by DFA(detrended fluctuation analysis). The empirical results are summarized as follows. First, the presence of significant long memory properties is not identified in return time series. But, in volatility time series, as the Hurst exponent has the high value on average, a strong presence of long memory properties is observed. Then, according to the results empirically confirming influential factors of long memory properties, as the Hurst exponent measured with volatility of residual returns filtered by GARCH(1, 1) model reflecting properties of volatility clustering has the level of $H{\approx}0.5$ on average, long memory properties presented in the data before filtering are no longer observed. That is, we positively find out that the observed long memory properties are considerably due to volatility clustering effect.

  • PDF