• Title/Summary/Keyword: Bus Operation Management

Search Result 85, Processing Time 0.024 seconds

A Study on Integrated Operation of School Bus in Suburbs (교외지역 통학버스 통합 운영 방안 연구)

  • Ko, Young Dae;Oh, Yonghui
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.4
    • /
    • pp.899-910
    • /
    • 2018
  • Purpose: Generally, since the population density is lower in suburban areas, the distance to school is inevitably long. Therefore, schools in suburban areas often operate school buses to improve student welfare. However, since school buses are usually used only during going to and from school, the utilization rates are relatively low. Therefore, this study aims to establish integrated operation plan of public school bus covering all schools. Methods: It is necessary to decide which school buses will serve the specific demand node which want to go to certain school in order to design an integrated operation plan for school buses. Therefore, a mathematical model is developed for minimizing the total number of vehicles and the distance of transportation by reflecting the characteristics of school buses and students as constraints. To solve the proposed mathematical model, CPLEX, a commercial solver, is applied. Results: To validate and to confirm the proposed process, numerical example is designed with the comparison between before and after integrated operations of school buses in terms of total operation cost. The result shows that the integrated operation can lead the reduction of the number of school buses as well as the decreasing of the fuel cost. Conclusion: This study provides the quantitative method to perform the integrated operation of school buses in suburban areas. The optimal operation strategy is required because there are more complex decision-making elements considering the integrated operation. It is expected to apply this research result at real situation to expand this services based on an optimal operation.

Optimal Headways of Urban Bus Services, Reflecting Actual Cycle Time and Demand (운행시간 및 수요 기반 버스 최적배차간격 산정에 관한 연구)

  • Kim, Sujeong;Shin, Yong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.167-174
    • /
    • 2018
  • This study attempts to construct a model of optimal headway, focusing on a practical applicability to bus transit operation. Examining the existing bus operation and scheduling plans imposed by Busan City, we found that the plans failed to reasonably take into account such realities as varying traffic and operational conditions. The model is thus developed to derive the hourly optimal headway by routes satisfying the real-world conditions: varying hourly demand and cycle time, applying the model to routes 10 and 27 as examples. To do so, we collect big-dataset generated by smart card system and BIMS (Bus Inforamtion Management System). It is expected that the results of this study wil be a basis for further refined research in this field as well as for preparing practical timetables for bus operation.

A Development of Evaluation Index for Bus Demand-Elastic Schedule Management (수요탄력적 버스배차관리를 위한 평가지표 개발 및 적용)

  • Lee, Ho-Sang;Chang, Hyun-Ho;Kim, Young-Chan;Hwang, Kyong-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • Although enormous data have been collected in major cities (Korea) by APTS(Advanced Public Transit Systems), most of studies related to bus schedule management evaluation have confined to headway adherence and on-time performance. Therefore, bus operation management have been very lack of using APTS data. This study uses coefficient of correlation to evaluate bus company's schedule management level. However, direct application of coefficient of correlation has inequitable problem because of many limitation(number of vehicle, headway, etc). and so variable calibration method was developed and applied to cope with these problems. Thus, demand-elastic management evaluation index was developed. For verifying the equity of developed index, it is applied to Seoul bus routes. It is expected for the developed index to contribute into the demand-elastic management of bus schedule.

  • PDF

Analysis on Actual Condition of Usage and Safety Management for CNG Pressure Vessel in Bus (CNG버스 내압용기 사용 및 안전관리 실태 분석)

  • Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.6-14
    • /
    • 2019
  • There are about 38,977 CNG cars and 247 natural gas vehicle charging stations in operation in order to improve the urban air environment. With the introduction of natural gas vehicles, the atmospheric environment, which was the main cause of air pollution in the metropolitan area, was remarkably improved. However, unlike these positive effects, CNG bus accidents, which occurred more than 10 times since 2005, have caused concern among the majority of citizens using public transportation. It is necessary to make a judgment on the feasibility and future direction of CNG pressure vessel safety management that can safeguard the safety of CNG pressure vessel at the time of starting. In this study, we investigates production and use of CNG vessel, the current status of safety management of CNG bus transportation companies & charging stations and then proposes measures to prevent accident recurrence and safety management based on the actual situation investigation and analysis.

THE ANALYSIS OF PSM (POWER SUPPLY MODULE) FOR MULTI-SPECTRAL CAMERA IN KOMPSAT

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.493-496
    • /
    • 2005
  • The PMU (Payload Management Unit) in MSC (Multi-Spectral Camera) is the main subsystem for the management, control and power supply of the MSC payload operation. The PMU shall handle the communication with the BUS (Spacecraft) OBC (On Board Computer) for the command, the telemetry and the communications with the various MSC units. The PMU will perform that distributes power to the various MSC units, collects the telemetry reports from MSC units, performs thermal control of the EOS (Electro-Optical Subsystem), performs the NUC (Non-Uniformity Correction) function of the raw imagery data, and rearranges the pixel data and output it to the DCSU (Data Compression and Storage Unit). The BUS provides high voltage to the MSC. The PMU is connected to primary and redundant BUS power and distributes the high unregulated primary voltages for all MSC sub-units. The PSM (Power Supply Module) is an assembly in the PMU implements the interface between several channels on the input. The bus switches are used to prevent a single point system failure. Such a failure could need the PSS (Power Supply System) requirement to combine the two PSM boards' bus outputs in a wired-OR configuration. In such a configuration if one of the boards' output gets shorted to ground then the entire bus could fail thereby causing the entire MSC to fail. To prevent such a short from pulling down the system, the switch could be opened and disconnect the short from the bus. This switch operation is controlled by the BUS.

  • PDF

Development of Optimal Bus Scheduling Algorithm with Multi-constraints (다중제약을 고려한 최적 버스운행계획 알고리즘 개발)

  • Lee, Ho-Sang;Park, Jong-Heon;Jo, Seong-Hun;Yun, Byeong-Jo
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.129-138
    • /
    • 2006
  • After Seoul has introduced semi-public bus management system(public management-private operation), the Seoul Metro Government needs a scientific management tool for optimal scheduling for bus routes, to reduce unnecessary operations and provide demand responsive service. As a product of this effort, this paper proposes a heuristic model that could minimize total passenger waiting time under the constraints, such as number of vehicles, working conditions, max load point, minimax headway. etc. For verifying the validity of the proposed model, it is applied to an existing bus route. It results that headways in rush hours become decreased and the passenger waiting time could be decreased. In conclusion. it is thought that the Proposed model contributes to efficiency of bus operation.

A Study on Construction of Unified Control and Operation System for the Efficient Operation of Bimodal Tram (바이모달트램의 효율적 운용을 위한 통합관제시스템 구축에 관한 연구)

  • Lee, Kang-Won;Yun, Hee-Tek;Park, Young-Kon;Kil, Gun-Kuk;Oh, Jae-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.633-637
    • /
    • 2007
  • Bimodal Tram is the newly developed vehicle for both the tracked way and the public road. Its operation system has some characteristics including BIS(bus information system)/BMS(bus management system) based on ITS(intelligent Transportation system) which is used presently in public transportation operation system. One of them is more accurate vehicle fleet control based on both magnetic maker position reference system and GPS(global positioning system) and the other is automatic vehicle control for emergency situations by the Bimodal Tram operation system which will be performed by the unified control and operation center. This paper has investigated the requirements and functional definitions necessary to construct the unified control and operation center for Bimodal Tram operation system which will be more efficient and secure public transportation system than the conventional ones.

  • PDF

Comparative Study of Two Congestion Management Methods for the Restructured Power Systems

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.;Mandala, Manasarani
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.302-310
    • /
    • 2011
  • Congestion management is one of the most challenging tasks of a system operator to ensure the operation of transmission system within operating limits. In this paper, cluster/zone method and relative electrical distance (RED) method for congestion management are compared based on the considered parameters. In the cluster/zone method, rescheduling of generation is based on user impact on congestion through the use of transmission congestion distribution factors. In the RED method, the desired proportions of generations for the desired overload relieving are obtained. Even after generation rescheduling, if congestion exists, load curtailment option is also introduced. Rescheduling cost, system cost, losses, and voltage stability parameter are also calculated and compared for the above two methods of congestion management. The results are illustrated on sample 6-bus, IEEE 30-bus, and Indian utility 69-bus systems.

A Study on SafeNavigation Management of an Aqua-bus In the Channel between Wolmi-do and Yungjong-do (월미도와 영종도 수로간 아쿠아버스 통항안전관리에 관한 연구)

  • Kim Se-won;Lee Eun-bang;Lee Yun-sok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.181-187
    • /
    • 2005
  • In order to reduce the management risks of and secure traffic safety of Aqua-bus which will be operated at the channel of Wolmi do and Yungjong-do for the first time in Korea, we investigate maritime traffic and natural environment around the channel, and analyze the factors of risk involved in her operation. We also propose the countermeasure to secure the safety of navigation in her service including precautionary area, exclusive terminal, operation management, and etc.

Development of a Model for Dynamic Station Assignmentto Optimize Demand Responsive Transit Operation (수요대응형 모빌리티 최적 운영을 위한 동적정류장 배정 모형 개발)

  • Kim, Jinju;Bang, Soohyuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • This paper develops a model for dynamic station assignment to optimize the Demand Responsive Transit (DRT) operation. In the process of optimization, we use the bus travel time as a variable for DRT management. In addition, walking time, waiting time, and delay due to detour to take other passengers (detour time) are added as optimization variables and entered for each DRT passenger. Based on a network around Anaheim, California, reserved origins and destinations of passengers are assigned to each demand responsive bus, using K-means clustering. We create a model for selecting the dynamic station and bus route and use Non-dominated Sorting Genetic Algorithm-III to analyze seven scenarios composed combination of the variables. The result of the study concluded that if the DRT operation is optimized for the DRT management, then the bus travel time and waiting time should be considered in the optimization. Moreover, it was concluded that the bus travel time, walking time, and detour time are required for the passenger.