• 제목/요약/키워드: Burnup determination

검색결과 29건 처리시간 0.026초

DETERMINATION OF THE TRANSURANIC ELEMENTS INVENTORY IN HIGH BURNUP PWR SPENT FUEL SAMPLES BY ALPHA SPECTROMETRY-II

  • Joe, Kih-Soo;Song, Byung-Chul;Kim, Young-Bok;Jeon, Young-Shin;Han, Sun-Ho;Jung, Euo-Chang;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.99-106
    • /
    • 2009
  • The contents of transuranic elements ($^{237}Np$, $^{238}Pu$, $^{239}Pu$, $^{240}Pu$, $^{241}Am$, $^{244}Cm$, and $^{242}Cm$) in high-burnup spent fuel samples ($35.6{\sim}53.9\;GWd/MtU$) were determined by alpha spectrometry. Anion exchange chromatography and diethylhexyl phosphoric acid extraction chromatography were applied for the separation of these elements from the uranium matrix. The measured values of the nuclides were compared with ORIGEN-2 calculations. For plutonium, the measurements were higher than the calculations by about $2.6{\sim}32.7%$ on average according to each isotope, and those for americium and curium were also higher by about $35.9{\sim}63.1%$. However, for $^{237}Np$, the measurements were lower by about 52% on average for the samples.

Sensitivity studies on a novel nuclear forensics methodology for source reactor-type discrimination of separated weapons grade plutonium

  • Kitcher, Evans D.;Osborn, Jeremy M.;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1355-1364
    • /
    • 2019
  • A recently published nuclear forensics methodology for source discrimination of separated weapons-grade plutonium utilizes intra-element isotope ratios and a maximum likelihood formulation to identify the most likely source reactor-type, fuel burnup and time since irradiation of unknown material. Sensitivity studies performed here on the effects of random measurement error and the uncertainty in intra-element isotope ratio values show that different intra-element isotope ratios have disproportionate contributions to the determination of the reactor parameters. The methodology is robust to individual errors in measured intra-element isotope ratio values and even more so for uniform systematic errors due to competing effects on the predictions from the selected intra-element isotope ratios suite. For a unique sample-model pair, simulation uncertainties of up to 28% are acceptable without impeding successful source-reactor discrimination. However, for a generic sample with multiple plausible sources within the reactor library, uncertainties of 7% or less may be required. The results confirm the critical role of accurate reactor core physics, fuel burnup simulations and experimental measurements in the proposed methodology where increased simulation uncertainty is found to significantly affect the capability to discriminate between the reactors in the library.

연소를 고려한 사용후핵연료저장조 핵임계 안전성분석에서 계산체제간의 편차결정 (A Determination of Bias between Calculational Methods for the Criticality Safety Analysis of Spent Fuel Storage Pool with Burnup Credit)

  • Byung Jin Jun;Chang-Kun Lee;Hee-Chun No
    • Nuclear Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.17-26
    • /
    • 1986
  • 연소를 고려하는 사용후핵연료저장조의 핵임계 안전성 분석에서 검증용 계산 체제와 rack계산 체제 사이의 편차를 신뢰성 있게 결정하는 방법을 시험하였다. 이를 위하여 고리 1호기의 사용후핵연료저장조를 연소를 고려하는 가장 조밀한 rack으로 개념설계하고, 핵연료의 농축도 및 연소도에 따라 증배계수를 계산하였다. 표준값 생산용 Monte Carlo 코드로는 KENO-IV를 그리고 실제 rack 설계용으로는 2차원 충돌화률 코드인 FATAC을 사용하였다. 이 두 계산의 결과를 상호 비교하여 계산 체제 사이의 편차와 이의 경향성 및 신뢰도를 평가하였다. 이 방법을 사용하면 확실한 신뢰도 근거를 마련할 수 있을 뿐만 아니라 반응도 여유면에서 기존의 방법보다 불리하지 않음이 입증되었다.

  • PDF

Characteristics of a Fusion Driven Transmutation Reactor

  • Hong, B.G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.582-582
    • /
    • 2012
  • Characteristics of a fusion-driven transmutation reactor was investigated. A compact reactor concept is desirable from an economic viewpoint. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components. In a transmutation reactor, design of blanket and shield play a key role in determining the size of a reactor; the blanket should produce enough tritium for tritium self-sufficiency, the transmutation rate of waste has to be maximized, and the shield should provide sufficient protection for the superconducting toroidal field (TF) coil. To determine the radial build of the blanket and the shield, not only a radiation transport analysis but also a burnup calculation were coupled with the system analysis and it allowed the self-consistent determination of the design parameters of a transmutation reactor.

  • PDF