• 제목/요약/키워드: Burn-up module

검색결과 3건 처리시간 0.018초

A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors

  • Cechet, A.;Altieri, S.;Barani, T.;Cognini, L.;Lorenzi, S.;Magni, A.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1893-1908
    • /
    • 2021
  • In light of the importance of helium production in influencing the behaviour of fast reactor fuels, in this work we present a burn-up module with the objective to calculate the production of helium in both in-pile and out-of-pile conditions tracking the evolution of 23 alpha-decaying actinides. This burn-up module relies on average microscopic cross-section look-up tables generated via SERPENT high-fidelity calculations and involves the solution of the system of Bateman equations for the selected set of actinide nuclides. The results of the burn-up module are verified in terms of evolution of actinide and helium concentrations by comparing them with the high-fidelity ones from SERPENT, considering two representative test cases of (U,Pu)O2 fuel in fast reactor conditions. In addition, a code-to-code comparison is made with the independent state-of-the-art module TUBRNP (implemented in the TRANSURANUS fuel performance code) for the same test cases. The herein presented burn-up module is available in the SCIANTIX code, designed for coupling with fuel performance codes.

고온 및 단락전류에 따른 리튬배터리의 폭발 및 화재 위험성에 관한 연구 (Study on the Explosion and Fire Risks of Lithium Batteries Due to High Temperature and Short Circuit Current)

  • 심상보;이춘하;김시국
    • 한국화재소방학회논문지
    • /
    • 제30권2호
    • /
    • pp.114-122
    • /
    • 2016
  • 본 논문은 리튬배터리의 고온 및 단락전류에 따른 폭발 및 화재 위험성을 분석하기 위한 연구이다. 이에 대표적인 리튬배터리 종류인 리튬폴리머배터리 및 리튬이온배터리를 실험시료로 선정하였다. 고온에 따른 폭발위험성 측정결과 리튬폴리머배터리의 경우 평균 $170^{\circ}C$, 리튬이온배터리의 경우 평균 $187^{\circ}C$에서 폭발이 일어났다. 단락전류에 따른 온도상승측정결과 보호회로가 정상작동 할 경우 과전류를 제한하여 온도상승이 거의 없었지만, 보호회로가 고장 났을 경우 리튬폴리머배터리의 경우 평균 $115.7^{\circ}C$ 및 리튬이온배터리 경우 평균 $80.5^{\circ}C$까지 상승하여 화재 및 화상 위험성이 높게 나타나는 것으로 측정되었다.

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.