• Title/Summary/Keyword: Burkholderia vietnamiensis

Search Result 5, Processing Time 0.022 seconds

Molecular Characterization of Burkholderia cepacia Complex Isolates Causing Bacterial Fruit Rot of Apricot

  • Li, Bin;Fang, Yuan;Zhang, Guoqing;Yu, Rongrong;Lou, Miaomiao;Xie, Guanlin;Wang, Yanli;Sun, Guochang
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.223-230
    • /
    • 2010
  • The Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot were characterized by speciesspecific PCR tests, recA-HaeIII restriction fragment length polymorphism (RFLP) assays, rep-PCR genomic fingerprinting, recA gene sequencing, and multilocus sequence typing (MLST) analysis. Results indicated that the isolates Bca 0901 and Bca 0902 gave positive amplifications with primers specific for B. vietnamiensis while the two bacterial isolates showed different recA-RFLP and rep-PCR profiles from those of B. vietnamiensis strains. In addition, the two bacterial isolates had a higher proteolytic activity compared with that of the non-pathogenic B. vietnamiensis strains while no cblA and esmR marker genes were detected for the two bacterial isolates and B. vietnamiensis strains. The two bacterial isolates were identified as Burkholderia seminalis based on recA gene sequence analysis and MLST analysis. Overall, this is the first characterization of B. seminalis that cause bacterial fruit rot of apricot.

Molecular Characterization of Burkholderia Strains Isolated from Rice Cultivars (Oryza sativa L.) for Species Identification and Phylogenetic Grouping

  • Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Kwon, Soon-Wo;Song, Myung-Hee;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1005-1010
    • /
    • 2008
  • The genus Burkholderia consists of extremely versatile bacteria that occupy diverse niches and are commonly encountered in the rhizosphere of crop plants. In this study, we characterized three plant growth promoting strains assigned as Burkholderia sp. using biochemical and molecular characterization. The Burkholderia spp. strains CBMB40, CBPB-HIM, and CBPB-HOD were characterized using biochemical tests, BIOLOG carbon substrate utilization, fatty acid methyl ester analysis, analysis of recA gene sequences, and DNA-DNA hybridization. The results from these studies indicated that the strains CBMB40, CBPB-HIM, and CBPB-HOD can be assigned under Burkholderia vietnamiensis, Burkholderia ubonensis, and Burkholderia pyrrocinia, respectively.

Isolation and identification of a tricin 4"-O-(threo-β-guaiacylglyceryl) ether producing microorganism from germinated rice (발아 벼로부터 tricin 4"-O-(threo-β-guaiacylglyceryl) ether 생성균주의 분리 및 동정)

  • Yoon, Nara;Jang, Gwi Yeong;Lee, Yoon Jeong;Li, Meishan;Kim, Min Young;Kim, Hyun Young;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.361-365
    • /
    • 2016
  • This study was conducted to isolate and identify a microorganism that increases tricin-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) content in the hulls of rice (Oryza sativa L.). Bacteria from germinated rice were isolated by enrichment cultivation using yeast mold, luria bertani, potato dextrose and mannitol egg york polymyxin broths. The highest increase in TTGE content ($339.30{\mu}g/g$) was achieved by a microorganism isolated by PDA enrichment cultivation. On the basis of 16S RNA sequence homology and phylogenetic analysis, the isolated bacterium was identified to have 100% similarity with Burkholderia vietnamiensis. The isolated bacteria were short rods, negative for the Gram stain, and positive for the catalase test. The highest TTGE level was $435.86{\mu}g/g$ in 72-h fermented samples, representing a 2.5x increase compared with the control ($175.65{\mu}g/g$). In conclusion, the bacterium isolated from germinated rice extract was Burkholderia vietnamiensis, and the optimum fermentation period to maximize TTGE levels was 72 h. These findings might help in developing functional materials using rice hulls, a waste product of rice milling.

Bacterial Dynamics of Biofilm Development During Toluene Degradation by Burkholderia vietnamiensis G4 in a Gas Phase Membrane Bioreactor

  • Kumar, Amit;Dewulf, Jo;Wiele, Tom Van De;Langenhove, Herman Van
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1028-1033
    • /
    • 2009
  • In this study, the dynamics of living cells (LC) and dead cells (DC) in a laboratory-scale biofilm membrane bioreactor for waste gas treatment was examined. Toluene was used as a model pollutant. The bacterial cells were enumerated as fluoromicroscopic counts during a 140 operating day period using BacLight nucleic acid staining in combination with epifluorescence and confocal laser scanning microscopy (CSLM). Overall, five different phases could be distinguished during the biofilm development: (A) cell attachment, (B) pollutant limitation, (C) biofilm establishment and colonization, (D) colonized biofilm, and (E) biofilm erosion. The bioreactor was operated under different conditions by applying different pollutant concentrations. An optimum toluene removal of 89% was observed at a loading rate of 14.4 kg $m^{-3}d^{-1}$. A direct correlation between the biodegradation rate of the reactor and the dynamics of biofilm development could be demonstrated. This study shows the first description of biofilm development during gaseous toluene degradation in MBR.

Characteristics of digestive enzyme activity, antibiotic resistance, and pathogenicity of bacteria inhabited in animal feed resources (사료자원에 서식하는 세균의 소화효소활성, 항생제내성 및 병원성에 관한 특성)

  • Yi, Kwon Jung;Cho, Sang Seop;Kim, Soo-Ki
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • Among different types of spoilage, microbial contamination can cause feed decomposition, which results in decreases in feed intake and productivity, infection, and breeding disorder. During the storage time, various microbes have a chance to inoculate with depreciation of feed and to infect the animals. We investigated bacteria that inhabit diverse feed ingredients and complete feed which have been stored for a few months. We isolated and identified 30 genera and 62 species of bacteria. Among these 62 species, 21 species were of non-pathogenic bacteria, 18 species were of pathogenic bacteria, 9 species were of opportunistic pathogens, and 14 species were of unknown bacteria. Pantoea allii and 24 species showed proteolytic enzyme activity. We also confirmed that 6 species including Pseudomonas psychrotolerans showed ${\alpha}$-amylase activity, and 29 species including Burkholderia vietnamiensis showed cellulase activity. Microbacterium testaceum and 3 species showed resistance to Ampicillin, Kanamycin, Streptomycin, Gentamicin, Carbenicillin, and Erythromycin ($50{\mu}g/mL$). Using mealworm larvae (Tenebrio molitor L.) as a model for pathogenicity, we confirmed that 8 species including Staphylococcus xylosus had pathogenicity for mealworm larvae. Especially, Enterobacter hormaechei, Staphylococcus xylosus, and Staphylococcus hominis were reported as being pathogenic for humans. This research suggests that hygienic management of animal feed is essential because beneficial and harmful bacteria can inhabit animal feed differently during storage and distribution.