DOI QR코드

DOI QR Code

Molecular Characterization of Burkholderia cepacia Complex Isolates Causing Bacterial Fruit Rot of Apricot

  • Li, Bin (State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University) ;
  • Fang, Yuan (State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University) ;
  • Zhang, Guoqing (State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University) ;
  • Yu, Rongrong (Zhejiang University of Technology) ;
  • Lou, Miaomiao (State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University) ;
  • Xie, Guanlin (State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University) ;
  • Wang, Yanli (Zhejiang Academy of Agricultural Sciences) ;
  • Sun, Guochang (Zhejiang Academy of Agricultural Sciences)
  • Received : 2010.05.27
  • Accepted : 2010.07.26
  • Published : 2010.09.01

Abstract

The Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot were characterized by speciesspecific PCR tests, recA-HaeIII restriction fragment length polymorphism (RFLP) assays, rep-PCR genomic fingerprinting, recA gene sequencing, and multilocus sequence typing (MLST) analysis. Results indicated that the isolates Bca 0901 and Bca 0902 gave positive amplifications with primers specific for B. vietnamiensis while the two bacterial isolates showed different recA-RFLP and rep-PCR profiles from those of B. vietnamiensis strains. In addition, the two bacterial isolates had a higher proteolytic activity compared with that of the non-pathogenic B. vietnamiensis strains while no cblA and esmR marker genes were detected for the two bacterial isolates and B. vietnamiensis strains. The two bacterial isolates were identified as Burkholderia seminalis based on recA gene sequence analysis and MLST analysis. Overall, this is the first characterization of B. seminalis that cause bacterial fruit rot of apricot.

Keywords

References

  1. Baldwin, A., Mahenthiralingam, E., Thickett, K. M., Honeybourne, D., Maiden, M. C. J., Govan, J. R., Speert, D. P., LiPuma, J. J., Vandamme, P. and Dowson, C. G. 2005. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J. Clin. Microbiol. 43:4665-4673. https://doi.org/10.1128/JCM.43.9.4665-4673.2005
  2. Clode, F. E., Kaufmann, M. E., Malnick, H. and Pitt, T. L. 2000. Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic brosis patients in the United Kingdom. J. Clin. Microbiol. 38:1763-1766.
  3. Coenye, T. and Vandamme, P. 2003. Diversity and signicance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5:719-729. https://doi.org/10.1046/j.1462-2920.2003.00471.x
  4. Curran, B., Jonas, D., Grundmann, H., Pitt, T. and Dowson, C. G. 2004. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 42:5644-5649. https://doi.org/10.1128/JCM.42.12.5644-5649.2004
  5. Fang, Y., Li, B., Wang, F., Liu, B. P., Wu, Z. Y., Qiu, W. and Xie, G. L. 2009. Bacterial fruit rot of apricot caused by Burkholderia cepacia in China. Plant Pathol. J. 25:429-432. https://doi.org/10.5423/PPJ.2009.25.4.429
  6. Fang, Y., Lou, M. M., Li, B., Xie, G. L., Wang, F., Zhang, L. X. and Luo, Y. C. 2010. Characterization of Burkholderia cepacia complex from cystic fibrosis patients in China and their chitosan susceptibility. World J. Microbiol. Biotechnol. 26: 443-450. https://doi.org/10.1007/s11274-009-0187-z
  7. Fang, Y., Zhang, L. X. and Xie, G. L. 2007. Internal bacterial rot of onion bulbs caused by Burkholderia cepacia in China. J. Plant Pathol. 89:294.
  8. Gevers, D., Huys, G. and Swings, J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205:31-36. https://doi.org/10.1111/j.1574-6968.2001.tb10921.x
  9. Gingues, S., Kooi, C., Visser, M. B., Subsin, B. and Sokol, P. A. 2005. Distribution and expression of the ZmpA metalloprotease in the Burkholderia cepacia complex. J. Bacteriol. 187:8247-8255. https://doi.org/10.1128/JB.187.24.8247-8255.2005
  10. Godoy, D., Randle, G., Simpson, A. J., Aanensen, D. M., Pitt, T. L., Kinoshita, R. and Spratt, B. G. 2003. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol. 41:2068-2079. https://doi.org/10.1128/JCM.41.5.2068-2079.2003
  11. Jeon, Y. H., Chang, S. P., Kim, S. G. and Kim, Y. H. 2006. Halo blight of kudzu vine caused by Pseudomonas syringae pv. phaseolicola in Korea. Plant Pathol. J. 22:119-124. https://doi.org/10.5423/PPJ.2006.22.2.119
  12. Jeon, Y. H., Park, H., Lee, B. D., Yu, Y. H., Chang, S. P., Kim, S. G., Hwang, I. and Kim, Y. H. 2008. First description of crown gall disease on ginseng. Plant Pathol. J. 24:207-210. https://doi.org/10.5423/PPJ.2008.24.2.207
  13. Jolley, K. A., Chan, M. S. and Maiden, M. C. 2004. mlstdbNet -distributed multi-locus sequence typing (MLST) databases. BMC Bioinform. 5:86. https://doi.org/10.1186/1471-2105-5-86
  14. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5:150-163. https://doi.org/10.1093/bib/5.2.150
  15. Lee, Y. A. and Chan, C. W. 2007. Molecular typing and presence of genetic markers among strains of banana finger-tip rot pathogen, Burkholderia cenocepacia, in taiwan. Phytopathology 97:195. https://doi.org/10.1094/PHYTO-97-2-0195
  16. Lee, Y. S., Han, H. S., Kim, G. H., Koh, Y. J., Hur, J. S. and Jung, J. S. 2009. Causal agents of blossom blight of Kiwifruit in Korea. Plant Pathol. J. 25:220-224. https://doi.org/10.5423/PPJ.2009.25.3.220
  17. Li, B., Xie, G. L., Zhang, J. Z., Janssens, D. and Swings, J. 2006. Identification of the bacterial leaf spot pathogen of poinsettia in China. J. Phytopathol. 154:711-715. https://doi.org/10.1111/j.1439-0434.2006.01178.x
  18. Li, B., Xu, L. H., Lou, M. M., Li, F., Zhang, Y. D. and Xie, G. L. 2008. Isolation and characterization of antagonistic bacteria against bacterial leaf spot of Euphorbia pulcherrima. Lett. Appl. Microbiol. 46:450-455. https://doi.org/10.1111/j.1472-765X.2008.02337.x
  19. Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1995. Determination of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathology 85:528-536. https://doi.org/10.1094/Phyto-85-528
  20. Ludovic, V., Groleau, M. C., Dekimpe, V. and Deziel, E. 2007. Burkholderia diversity and versatility: an inventory of the extracellular products. J. Microbiol. Biotechnol. 17:1407-1429.
  21. Mahenthiralingam, E., Baldwin, A. and Dowson, C. G. 2008. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J. Appl. Microbiol. 104: 1539-1551. https://doi.org/10.1111/j.1365-2672.2007.03706.x
  22. Mahenthiralingam, E., Bischof, J., Byrne, S. K., Radomski, C., Davies, J. E., Av-Gay, Y. and Vandamme, P. 2000. DNA-based diagnostic approaches for identication of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J. Clin. Microbiol. 38:3165-3173.
  23. Mahenthiralingam, E., Simpson, D. A. and Speert, D. P. 1997. Identication and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic brosis. J. Clin. Microbiol. 35:808-816.
  24. McKevitt, A. I., Bajaksouzian, S., Klinger, J. D. and Woods, D. E. 1989. Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect. Immun. 57:771-778.
  25. Nazari, F., Niknam, G. R., Ghasemi, A., Taghavi, S. M., Momeni, H. and Torabi, S. 2007. An investigation on strains of Clavibacter michiganensis subsp. michiganensis in north and north west of Iran. J. Phytopathol. 155:563-569. https://doi.org/10.1111/j.1439-0434.2007.01304.x
  26. Parke, J. L. and Gurian-Sherman, D. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Ann. Rev. Phytopathol. 39:225-258. https://doi.org/10.1146/annurev.phyto.39.1.225
  27. Payne, G. W., Vandamme, P., Morgan, S. H., LiPuma, J. J., Coeyne, T., Weightman, A. J., Jones, T. H. and Mahenthiralingam, E. 2005. Development of a recA gene-based identication approach for the entire Burkholderia genus. Appl. Environ. Microbiol. 71:3917-3927. https://doi.org/10.1128/AEM.71.7.3917-3927.2005
  28. Sahin, F., Abbasi, P. A., Lewis Ivey, M. L., Zhang, J. and Miller, S. A. 2003. Diversity among strains of Xanthomonas campestris pv. vitians from lettuce. Phytopathology 93:64-70. https://doi.org/10.1094/PHYTO.2003.93.1.64
  29. Sexton, M. M., Jones, A. L., Chaowagul, W. and Woods, D. E. 1994. Purification and characterization of a protease from Pseudomonas pseudomallei. Can. J. Microbiol. 40:903-910. https://doi.org/10.1139/m94-145
  30. Sokol, P. A., Ohman, D. E. and Iglewski, B. H. 1979. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol. 9:538-540.
  31. Vandamme, P., Henry, D., Coenye, T., Nuzla, S., Vancanneyt, M., LiPuma, J. J., Speert, D. P., Govan, J. R. W. and Mahenthiralingam, E. 2002. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia: two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol. Med. Microbiol. 33:143-149. https://doi.org/10.1111/j.1574-695X.2002.tb00584.x
  32. Vanlaere, E., Baldwin, A., Gevers, D., Henry, D., Brandt, E. D., LiPuma, J. J., Mahenthiralingam, E., Speert, D. P., Dowson, C. and Vandamme, P. 2009. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species: Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int. J. Syst. Evol. Microbiol. 59:102-111. https://doi.org/10.1099/ijs.0.001123-0
  33. Vanlaere, E., LiPuma, J. J., Baldwin, A., Henry, D., Brandt, E. D., Mahenthiralingam, E., Speert, D. P., Dowson, C. and Vandamme, P. 2008. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int. J. Syst. Evol. Microbiol. 58:1580-1590. https://doi.org/10.1099/ijs.0.65634-0
  34. Vermis, K., Coenye, T., Mahenthiralingam, E., Nelis, H. J. and Vandamme, P. 2002. Evaluation of species-specic recA-based PCR tests for genomovar level identication within the Burkholderia cepacia complex. J. Med. Microbiol. 51:937-940. https://doi.org/10.1099/0022-1317-51-11-937
  35. Versalovic, J., Schneider, M., de Bruijn, F. J. and Lupski, J. R. 1994. Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol. Cell. Biol. 5:25-40.
  36. Zhang, L. X. and Xie, G. L. 2007. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol. Lett. 266:231-235. https://doi.org/10.1111/j.1574-6968.2006.00530.x

Cited by

  1. Genome Sequencing and Transposon Mutagenesis ofBurkholderia seminalisTC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused byB. gladioli vol.29, pp.6, 2016, https://doi.org/10.1094/MPMI-02-16-0047-R
  2. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde vol.11, pp.5, 2013, https://doi.org/10.3390/md11051534
  3. Reclassification of Xanthomonas Isolates Causing Bacterial Leaf Spot of Euphorbia pulcherrima vol.27, pp.4, 2011, https://doi.org/10.5423/PPJ.2011.27.4.360
  4. Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria vol.112, pp.6, 2011, https://doi.org/10.1016/j.jbiosc.2011.08.017
  5. Phenotypic and molecular characterization of rhizobacterium Burkholderia sp. strain R456 antagonistic to Rhizoctonia solani, sheath blight of rice vol.27, pp.10, 2011, https://doi.org/10.1007/s11274-011-0696-4
  6. Diversity of potential pathogenicity and biofilm formation among Burkholderia cepacia complex water, clinical, and agricultural isolates in China vol.28, pp.5, 2012, https://doi.org/10.1007/s11274-012-1016-3
  7. Two quorum sensing systems control biofilm formation and virulence in members of theBurkholderia cepaciacomplex vol.4, pp.5, 2013, https://doi.org/10.4161/viru.25338
  8. Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis vol.346, pp.11, 2011, https://doi.org/10.1016/j.carres.2011.04.042
  9. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities vol.79, pp.24, 2013, https://doi.org/10.1128/AEM.02365-13