• Title/Summary/Keyword: Buried water pipes

Search Result 57, Processing Time 0.017 seconds

Attenuation Characteristics of the Buried Steel Water Pipes (지하매설 유체함입 강파이프의 감쇠특성 규명)

  • Park, K.J.;Kang, W.S.;Kim, Y.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The attenuation of the fundamental non-torsional modes that propagate down buried steel water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within pipe. The established acoustic technique used to locate leaks in buried steel water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode.

  • PDF

Elucidation of Corrosion and Failure of Stainless Steel Tubing buried in Soil for Potable Water (토양매설 스테인리스강 상수도 배관의 부식원인 규명)

  • Kim, Young Sik;Park, Soojin;Hwangbo, Deok;Shin, Mincheol
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Since buried pipes contact the soil directly, corrosion by the soil could be occurred. Recently, some stainless steel pipes after 8 years burial at G area were corroded and leaked. In order to elucidate highly corroded phenomena(its rate was about 0.175 mm/y) of these pipes, the investigation for corrosion environment, soil, stray current's effect, and chemical analysis on the pipes were performed. Most of investigated sites were close to traditional water-closet and showed high moisture and thus those areas could be highly corrosive. In the investigation by two kinds of soil evaluation methods, it was revealed that the soils at G areas were highly corrosive, and moreover the contents of sulfate reducing bacteria in the soils were high. Also, open circuit potentials of many pipes showed different values and its potentials were high positive. Therefore, it was considered that corrosion of buried pipes at G area could be affected by high corrosive soil's environment and stray current corrosion.

Performance Analysis of Detecting buried pipelines in GPR images using Faster R-CNN (Faster R-CNN을 활용한 GPR 영상에서의 지하배관 위치추적 성능분석)

  • Ko, Hyoung-Yong;Kim, Nam-gi
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.21-26
    • /
    • 2019
  • Various pipes are buried in the city as needed, such as water pipes, gas pipes and hydrogen pipes. As the time passes, buried pipes becomes aged due to crack, etc. these pipes has the risk of accidents such as explosion and leakage. To prevent the risks, many pipes are repaired or replaced, but the location of the pipes can also be changed. Failure to identify the location of the altered pipe may cause an accident by touching the pipe. In this paper, we propose a method to detect buried pipes by gathering the GPR images by using GPR and Learning with Faster R-CNN. Then experiments was carried out by raw data sets and data sets augmentation applied to increase the amount of images.

Characteristics of Acoustic Waves That Propagate in Buried Iron Water Pipes (매립된 유체함입 강파이프의 파동전파 특성규명)

  • Park, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • A study of the possible axisymmetric modes that propagate at low frequencies in buried, water-filled iron pipes is presented. It is well known that for a vacuum-pipe-vacuum system the sole non-torsional axisymmetric mode that exists at low frequencies is the fundamental L(0,1) mode. When a pipe is filled with water and still surrounded by a vacuum it is also known that another mode then appears which at low frequencies is characterized by predominantly axial water-borne displacements. In addition to these modes, this paper explores two other, less well known axisymmetric modes whose existence depends on the acoustic properties of the outer medium that surrounds a pipe. In this paper the predicted characteristics of these modes are presented.

  • PDF

REAL-TIME CORROSION CONTROL SYSTEM FOR CATHODIC PROTECTION OF BURIED PIPES FOR NUCLEAR POWER PLANT

  • Kim, Ki Tae;Kim, Hae Woong;Kim, Young Sik;Chang, Hyun Young;Lim, Bu Taek;Park, Heung Bae
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.).

Prediction of Long-Term behavior of polyethylene pipe buried underground (지중매설 폴리에틸렌 관의 장기거동 예측)

  • Lee, Jae-Ho;Kim, Bin;Yoon, Soo-Hyun;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Most of existing buried pipes are composed of reinforced concrete. Reinforced concrete pipes have many problems such as aging, corrosion, leaking, etc. The polyethylene (PE) pipes have advantages to solve these problems. The plastic pipes buried underground are classified into a flexible pipe. National standard that has limited the long-term vertical deformation of the pipe to 5% for flexible pipes including PE pipe. This study presents a prediction for the long-term behavior of the polyethylene pipe based on ASTM D 5365. This prediction method is presented to estimate by using the statistical method from the initial deflection measurement data. We predict the behavior of long-term performance on the double-wall pipe and multi-wall pipe. As a result, it was found that the PE pipe will be sound enough more than 50 years if the compaction of soil around the pipe is more than 95% of the standard soil compaction density.

A study on the basic experiment of performance criteria for application of pipe bursting method in actual field (Pipe Bursting 공법의 적용성 검토를 위한 주요 성능평가 항목의 기초실험연구)

  • Park, Sangbong;Kim, Kibum;Seo, Jeewon;Park, Sanghyuk;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.435-443
    • /
    • 2018
  • Most of aged water supply pipes have been replaced by the open cut method. However, this method has some limitations because water pipes, in many cases, are buried together with other underground facilities or are buried in the middle of high-traffic roads or in narrow alleyways where boring machines cannot be used. This research developed a pipe bursting device for small diameter pipes that enables pipe replacement without excavating the ground, by the busting of existing buried pipes followed by the traction and insertion of new pipes. As a results of examining the field applicability of the developed device, PE pipes and PVC pipes required the tractive force of 413.65~665.69 kgf and 457.43~791.35 kgf respectively, plus an additional 30 % tractive force per elbow. The proper number of bursting head was demonstrated that the connection of more than 2 heads could secure a stable bending radius of 15D. The developed device can be improved through field experiments involving various pipe types and pipe diameters, as well as presence/absence of elbow, so as to be utilized regardless of diverse variables according to the conditions of the soils surrounding existing pipes.

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

Analysis on the Likelihood of Axisymmetric Wave Propagation in Buried Water Pipes (지하매설 배관의 축대칭 파동 전파 가능성 해석)

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • A study of the possible axisymmetric modes that propagate at low frequencies in buried, water-filled pipes is presented. It is well known that for a vacuum-pipe-vacuum system the sole non-torsional axisymmetric mode that exists at low frequencies is the fundamental L(0,1) mode. When a pipe is filled with water and still surrounded by a vacuum it is also known that another mode then appears which at low frequencies is characterized by predominantly axial water-borne displacements. In addition to these modes. this paper explores two other, less well known axisymmetric modes whose exitence depends on the acoustic properties of the outer medium that surrounds a pipe. The predicted characteristics of these modes are presented and the likelihood of them propagating over any significant distance in a buried water pipe is discussed.

Behavior Analysis of Buried GFRP Pipes and Flanges (지중 매설 GFRP 관로 및 플랜지의 거동 분석)

  • Han, Taek Hee;Kim, Hyo-San;Jang, Young-Doo;Park, Yoon-Ho;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Static analyses and buckling analyses were carried out for buried GFRP pipes by using finite element method. Vehicle loads, vertical and lateral soil pressures were considered as external loads, and supplying water pressure was considered as an internal load. Nine types of the factory-manufactured GFRP pipes were analyzed. Their maximum stresses and displacements were compared with the limit displacements and ultimate stress. Additionally, stress analysis on an enhanced flange, which was designed to reduce stress concentration, was performed. A cantilever analysis was carried out to know the maximum stress on the neck of the flange, which is the critical part. And a static analysis was carried for the buried flange. The test results showed that GFRP pipes were safe and stable against the external loads. And they showed that the enhanced flange decreased about 35% of the stress concentration.

  • PDF