• Title/Summary/Keyword: Buried Pipe

Search Result 283, Processing Time 0.025 seconds

Numerical Analysis for Comparing Beam-spring and Continuum Model for Buried Pipes Considering Soil-pipe Interaction (매설관과 지반의 상호작용을 고려한 보-스프링 모델과 연속체 모델의 수치해석적 비교 연구)

  • Jeonghun Yang;Youngjin Shin;Hangseok Choi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.15-24
    • /
    • 2023
  • The behavior of buried pipes is directly influenced by the nonlinearity and complex characteristics of the surrounding soil. However, the simplified beam-spring model, which ignores the nonlinearity and complex behavior of soil, is commonly used in practice. In response, several studies have employed continuum analysis methods to account for the nonlinear and complex behavior of the soil. This paper presents various numerical continuum analysis techniques and verifies their comparison with full-scale tests. The study found that reaction force results close to the full-scale test could be obtained by applying contact surface characteristics that take into account the interaction between the ground and the buried pipe. In the case of sharing pipe and soil node method and ignoring the interaction between pipe and soil, excessive reaction force was derived, and the failure shapes were different. In addition, this study applied the dynamic explicit analysis method, ALE method, and CEL method. It was confirmed that the displacement-reaction relationship and failure shape are similar to those of the static analysis.

Reliability Estimation of the Buried Pipelines for the Ground Subsidence (지반침하에 대한 매설배관의 건전성 평가)

  • 이억섭;김의상;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1557-1560
    • /
    • 2003
  • This paper presents the effect of varying boundary conditions such as ground subsidence on failure prediction of buried pipelines. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with three cases of ground subsidence. We estimate the distribution of stresses imposed on the buried pipelines by varying boundary conditions and calculate the probability of pipelines with von-Mises failure criterion. The effects of random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and thickness of pipeline on the failure probability of the buried pipelines are also systematically studied by using a failure probability model for the pipeline crossing a ground subsidence region.

  • PDF

Behavior of Underground Flexible Pipe According to Ground Characteristics (지반특성에 따른 지중 연성관의 거동특성)

  • Chang, Yongchai;Kim, Yonghyu;Lee, Seungeun;Park, Kichul;No, Jinsuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.41-48
    • /
    • 2009
  • A flexible pipe was buried 10cm below the ground formed with standard sand to observe changes in the shape of the pipe according to the behavior of ground at each relative density. Changes in the shape of the pipe in each ground were observed to examine the behavior of the pipe under the state of reinforced ground after installing geogrid under the pipe. Ground reinforced using geogrid formed tensile force on the reinforcement material with increase in the vertical load and showed reduction in settlement under identical vertical load with existence of reinforcement. Distributions of ground deformation of 100% relative density and 70% relative density had clear difference. Reinforced ground with 70% density converged to the ground reaction of final settlement of non-reinforced ground with 100% density at final settlement of 100 mm. Because the shape of lower part strain of the buried pipe is similar to that of un-reinforced ground with relative density of 100%, reinforcement effect by geogrid in soft ground can be anticipated.

  • PDF

Pipe Stiffness Prediction of GRP Flexible Pipe (GRP 연성관의 관강성 예측)

  • Lee, Young-Geun;Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this paper, we present the load-deflection behavior of GRP pipes. GRP buried pipes are widely used in construction in the advantage of their superior mechanical and physical characteristics such as high chemical resistance, high corrosion resistance, right weight, smooth surface of the pipe, and cost effectiveness from soil-structure interaction. To design flexible pipes to be buried underground, it should be based on the ASTM D2412(2010). When applying ASTM D 2412(2010) to the design, pipe stiffness(PS) must be predetermined by the parallel-plate test which requires tedious and laborious working process. To overcome such problems, the finite element simulations for finding the load-deflection behavior of the GRP flexible pipes is installed at UTM testing machine. In the finite element simulations, basic data, such as the modulus of elasticity of the material and cross-sectional dimension, is used. From the investigation, we found that the difference between experimental result and analytical prediction is less than 15% when the pipe deflected 3% and 5% of its vertical diameter although the pipe material is not uniform across the cross-section.

Bearing Capacity of Shallow Foundation on Geosynthetic Reinforced Sand (토목섬유로 보강된 얕은기초 모래지반의 지지력)

  • Won Myoung-Soo;Ling Hoe I.;Kim You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.107-117
    • /
    • 2004
  • A series of model tests were conducted to investigate how the number of reinforcement layers, stiffnesses, types of reinforcement material and buried depth of a flexible pipe can affect bearing capacity-settlement curve at a loose sand foundation. In the test results, whereas the type of failure in unreinforced sand was local shear, the type of failure, for model tests with more than 2 reinforcement layers in loose sand, was general shear: The number of the optimum reinforcement layers was found to be two: Stiffness and type of reinforcement were more important than the maximum tensile strength of reinforcement in improving bearing capacity. When the depth of buried pipe from the sand surface was less than the width of the footing, test results showed that both bearing capacity and ultimate bearing capacity of buried pipe in unreinforced sand significantly decreased, and the type of failure in the reinforced sand changed from general shear to local shear.

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes (매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향)

  • Kim, M.G.;Lim, B.T.;Kim, K.T.;Chang, H.Y.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.211-223
    • /
    • 2020
  • The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions on failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

A Secular Change of Strength for Galvanized Steel Pipes for Vinyl Housing (비닐하우스용 아연도강관의 강도경년변화 시험(농업시설))

  • 남상운;김문기;권혁진
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.296-301
    • /
    • 2000
  • Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse farms. A secular change of yield strength for galvanized steel pipes was analyzed with the part of buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated that the small sized pipe houses of movable type is 7∼8 years and the large sized pipe houses of fixed type is 14∼15 years.

  • PDF

Methodology for Estimating the Probability of Damage to a Heat Transmission Pipe (열수송관 파손확률 추정 방법론 개발)

  • Kong, Myeongsik;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.15-21
    • /
    • 2021
  • Losses of both life and property increased from damage to underground pipe such as heat transmission pipe buried underground in downtown because pipes are gradually aging. Considering the characteristics of the heat transmission pipe, which is not exposed to the outside and difficult to immediately identify problems such as damage, it is realistic to indirectly check the condition of the facility based on the historical information that is periodically collected through facility maintenance. In this study, a methodology for estimating the damage probability was developed by examining the history information of the heat transmission pipe, deriving an evaluation factor that is related to the damage probability. The contribution factor of the damage probability were reviewed by analyzing not only the guidelines for maintenance of heat transmission pipe of advanced European countries and domestic district heating companies, but also the cases of waterworks with similar characteristics. Evaluation factors were selected by considering not only the correlation with the damage probability but also the possibility of securing data. Based on 1999, when the construction technology and standards of heat transmission pipe changed, the damage probability estimation function according to the period of use was divided into the case of being buried before 1998 and the case of being buried after 1999, and presented. In addition, the damage probability was corrected by assigning weights according to the measured data for each evaluation factor such as the diameter, use, and management authority.