• Title/Summary/Keyword: Bullet Impact

Search Result 45, Processing Time 0.037 seconds

Causes of the Fire at an Indoor Shooting Range in Busan

  • Park, Woe-Chul;Lee, Nae-Woo;Jeong, Lee-Gyu
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • On-site examinations and fire simulation were carried out to speculate on causes of the fire at an indoor shooting range in Busan. An experiment on the ignitability of unburned gunpowder was also conducted. Cigarette was the most likely source of ignition for the fire, while impact of a stray bullet failed to ignite the unburned gunpowder. The explosion in the shooting area was presumed to be caused by violent combustion of the polyurethane foam and unburned gunpowder accumulated on it. Fire safety measures include prohibit of use of profile polyurethane foam, complete clean-up of unburned gunpowder, and removal of steel components from the bullet trap.

Numerical Simulation of Steel/Kevlar Hybrid Composite Helmet Subjected to Ballistic Impact (탄도 충격을 받는 Steel/Kevlar 혼합복합재 헬멧 수치 시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1569-1575
    • /
    • 2012
  • In this study, ballistic impact effects on a helmet were investigated using the AUTODYN-3D program. Two types of materials were used for manufacturing the helmet: single Kevlar and Steel/Kevlar hybrid composites. Furthermore, two types of bullets were used in the simulation: steel spherical and 7.62 mm full-jacketed. In the simulation, the shape deformation of the projectile and internal energy were calculated. From the results, impact velocities above 655 m/s and 845 m/s were required to perforate the Steel/Kevlar helmet with steel spherical and 7.62 mm full-jacketed bullets, respectively. The results show that there was a large difference between the ballistic resistance of the Kevlar and Steel/Kevlar helmets. For the simulation on an NIJ-STD-0106.01 Type II helmet, a 7.62 mm fulljacketed bullet with a striking velocity of 358 m/s was used. Simulation results show that the Steel/Kevlar helmet could resist a 7.62 mm full-jacketed bullet traveling at 358 m/s.

The Development of 20 mm Test Barrel with Replaceable Powder Chamber Type (약실교환방식의 20 mm 시험용 총열 개발)

  • Lee, Jin-Sung;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.630-638
    • /
    • 2011
  • A new smooth bore test barrel was developed to be used in sensitivity assessment test for explosives and fragment impact test. The bore diameter of the barrel is 20 mm, and the powder chamber is designed to be replaceable with the 12.7 mm, 20 mm and 30 mm type chamber. The test results showed the wide range of fragment velocity from 400 to 2000 m/s, included the fragment velocity requirement of the fragment impact test(alternate procedure #1) in MIL-STD-2105B. The stability of the bullet trajectory was checked by test shots and the structural safety of the system has been confirmed through the stress analysis and the interior ballistics analysis of the barrel.

A Study of Failure Mechanism for Inclined Impact of PELE (PELE의 경사진 충격에 따른 파괴 메커니즘에 대한 연구)

  • Jo, Jong-Hyun;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.712-719
    • /
    • 2012
  • Penetrator with enhanced lateral effect(PELE) is a newconcept projectile, without dynamite and fuze. It consists of high-density jacket, closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE, by AUTODYN-3D code, the calculation models of projectile body and bullet target are established and the process of penetrating aluminum-2024 alloy target of PELE is simulated, and the scattering characteristics after penetrating aluminum-2024 alloy target of PELE are studied by different initial velocity. The explicit finite element analysis of PELE fragmentation was implemented with stochastic failure criterion in AUTODYN-3D code. As expansion of filling, the fragments were obtained velocities and dispersed laterally and further more enhancing the damage area largely. The number and shape of the PELE fragments were different depend on impact velocity and incidence angle of filling which fragment generated during penetration and lateral dispersion process.

Multilateral Nuclear Approaches (MNAs), Factors and Issues Lessons from IAEA Study to Regional Cooperation (다자간 원자력 협력: 요소와 현안)

  • Hwang Yong-Soo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.56-66
    • /
    • 2005
  • In response to the increasing emphasis being placed on the importance of international cooperation as part of global efforts to cope with growing non proliferation, and security, concerns in the nuclear field, the Director General of the International Atomic Energy Agency (IAEA), Mohamed ElBaradei, appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The mandate of the Expert Group was three fold: ${\bullet}$ To identify and provide an analysis of issues and options relevant to multilateral approaches to the front and back ends of the nuclear fuel cycle; ${\bullet}$ To provide an overview of the policy, legal, security, economic, institutional and technological incentives and disincentives for cooperation in multilateral arrangements for the front and back ends of the nuclear fuel cycle; and ${\bullet}$ To provide a brief review of the historical and current experiences and analyses relating to multilateral fuel cycle arrangements relevant to the work of the Expert Group. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. The Group identifies options for MNAs - options in terms of policy, institutional and legal factors - for those parts of the nuclear fuel cycle of greatest sensitivity from the point of view of proliferation risk. It also reflects the Groups deliberations on the corresponding benefits and disadvantages (pros and cons) of the various options and approaches. Although the Expert Group was able to agree to forward the resulting report to the Director General, it is important to note that the report does not reflect agreement by all of the experts on any of the options, nor a consensus assessment of their respective value. It is intended only to present options for MNAs, and to reflect on the range of considerations which could impact on the desirability and feasibility of those options.

  • PDF

Ballistic Cavity Simulation using Modified Bresenham Algorithm (개선된 브레즈넘 알고리즘을 이용한 탄흔 시뮬레이션)

  • Yunji Seok;Seongah Chin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.683-688
    • /
    • 2023
  • Content featuring next-generation weapons is continuously appearing in games and virtual reality. In the context of story development, the traces of a target's bullet marks are observed differently according to the unique characteristics of the rifle and bullet. Additionally, there is an example of using forensic ballistics to investigate crime by examining the traces of bullets. Understanding the relationship between the ballistic coefficient and cavity by ballistics is crucial during this process. This paper proposes a physics-based cavity simulation using the modified Bresenham's line algorithm, which can enhance realism in games and virtual reality. This simulation accurately models the trajectory of bullets and cavity formation upon impact, creating a more realistic representation of how bullets interact with materials. Overall, physics-based simulations can greatly enhance the realism and immersion of games and virtual reality experiences and can have applications in forensic investigations.

Insensitive Munitions Test for Solid Rocket Motor (고체 추진기관의 둔감탄약 시험)

  • 윤현걸;장승교;차홍석;장석태
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.29-29
    • /
    • 1998
  • 실전 배치되어 운용 중인 무기체계는 여러 형태의 사고 위험이 항상 존재한다 이중에서도 특히 항공기나 함정에서 발생하는 사고는 그 피해가 막대하게 커질 수도 있어 항공기나 함정 자체에 위협을 줄 수도 있다. 이러한 사고위험으로부터 인적, 물적 자원을 보호하기 위하여 둔감탄약(Insensitive Munitions)에 대한 인식이 높아지고 있으며, 아울러 이러한 무기 체계를 효과적으로 시험 평가하는 규격들이 검토되기 시작하여 1991년에 "Hazards Assesment Tests for Non-Nuclear Ordnance, DoD-STD-2105"를 기초로 한 MIL-STD-2105B가 채택되었다. 본 논문에서는 MIL-STD-2105B의 해석과 그에 따른 둔감탄약 시험에 포함되는 Bullet Impact Test, Fast Cookoff Test, Slow Cookoff Test, Fragment Impact Test, Sympathetic Detonation Test 등의 시험들의 세부적인 시험방법과 그 결과에 대한 판정 기준을 서술하였다. 또한 유도무기의 추진기관을 모델로 하여 둔감탄약 시험의 기준을 제시하였고 이 시험을 통과하기 위하여 향후 연구, 개발하여야 할 분야를 서술하였다.

  • PDF

A Study on Safety Evaluation Method of Lithium Secondary Battery Module for Military Operation (리튬 2차전지 모듈의 전장운용을 위한 안전성 평가기법 연구)

  • Yoo, Eun Ji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.378-386
    • /
    • 2014
  • In this paper, safety evaluation method simulating battlefield environment was studied to verify military operability of commercial lithium secondary battery. Based on the MIL-STD-2105D and STANAG standards, safety tests of lithium secondary battery module were conducted, such as bullet impact, fragment impact, fast cook-off and slow cook-off. All results satisfied the safety evaluation criteria, founded on military standard. It suggests that the lithium secondary module has high potential to be applied in a military power source. The safety evaluation methods developed in this paper can be valuable to propose the new military standards for commercial lithium secondary batteries.

Numerical Simulations of Dynamic Response of Cased Reactive System Subject to Bullet Impact (총탄 충격이 가해진 반응 시스템의 파괴 거동에 관한 수치적 연구)

  • Kim, Bohoon;Kim, Minsung;Doh, Youngdae;Kim, Changkee;Yoo, Jichang;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.525-538
    • /
    • 2014
  • Safety of reactive systems is one of the most important research areas in the field of weapon development. A NoGo response or at least a low-order explosion should be ensured to prevent unexpected accidents when the reactive system is impacted by high-velocity projectile. We investigated the shock-induced detonation of cased reactive systems subject to a normal projectile impact to the cylindrical surface based on two-dimensional hydrodynamic simulations using the I&G chemical rate law. Two types of energetic materials, namely LX-17 and AP-based solid propellant, were considered to compare the dynamic responses of the reactive system when subjected to the threshold impact velocity. It was found that shock-to-detonation transition phenomena occurred in the cased LX-17, whereas no full reaction occurred in the propellant.

Dynamic Analysis of the Turret for Analyzing the Accuracy Impact Factor of the Ground Combat Vehicle (지상 전투차량의 명중률 영향요소 분석을 위한 포의 동역학 해석)

  • Song, Jaebok;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.340-346
    • /
    • 2014
  • There are many factors that contribute to hit probability of the gun shot of ground combat vehicles. Aiming accuracy is mainly affected by the dynamic state of the vehicle. The stabilization error of the turret under system vibration is one of the major factors that affect the aiming accuracy. The vibration of the vehicle is affected by both the state of the road and the speed of the vehicle. This paper analyzes the aiming accuracy of the gun equipped on the GCV when the vehicle drives on the different roads and at different speed. The vertical displacement and the pitch angle of the gun are calculated and the impact points of the target are calculated. Distribution of the impact points on the target is greatly influenced by the pitch rotation rather than vertical displacement. And this aiming errors result in the errors of point of impacts on the target after the bullet flies through the air under trajectory equations. The GCV is modeled using a half-car model with 6 D.O.F. and the specifications of the M2 machine gun are used in trajectory calculation simulation and the target is located in 1000 m away from the gun.