• 제목/요약/키워드: Bulk melting

검색결과 110건 처리시간 0.025초

벌크비정질합금의 액상 성형성 평가 (Evaluation on Liquid Formability of Bulk Amorphous Alloys)

  • 주혜숙;강복현;김기영
    • 한국주조공학회지
    • /
    • 제26권5호
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.

제상과정 해석을 위한 눈의 융해거동에 관한 수치적 연구 (Numerical Study on the Behavior of Snow Melting for the Analysis of Defrosting Procedure)

  • 이관수;박준상;김서영
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.599-608
    • /
    • 2000
  • One dimensional numerical modeling was carried out for the melting behavior of dry snow and the unsaturated flow when heat was supplied from the bottom surface. Discrepancy between the previous experimental data and the present numerical results is substantially reduced by considering the density change of water permeation layer due to the infiltration of meltwater. In the parametric study for effective thermal conductivity, it was found that the effect of this parameter to the behavior of snow melting is minor. Sensitivity analysis showed that the melting time is most sensitive to changes in supplied heat flux, snow temperature, and bulk density, whereas snow bulk density and residual saturation have a significant effect on the height of water permeation layer in snow.

  • PDF

열처리조건이 초전도벌크의 임계특성에 미치는 영향 (The effects of heat treatment condition on critical characteristics of HTSC bulk)

  • 임성훈;한태희;박경국;조동언;이중근;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.356-359
    • /
    • 1997
  • The Effects of different melting temperature and holding time in the melting temperature on J$\sub$c/ of YBa$_2$Cu$_3$O$\sub$x/ based superconducting bulk using MPMG process were investigated. the value of critical current density was the largest at l120$^{\circ}C$, the melting temperature which is appointed to the mid point of (Y$_2$BaCuO$\sub$5/ + Liquid)region. With the melting temperature in which the value of J$\sub$c/ is the largest, J$\sub$c/ was again measured to see whether the holding time at this proper melting temperature has the effect on the critical characteristics. From the result above it was concluded that the melting temperature and holding time were important to improve the J$\sub$c/ and the formation of the Y$_2$BaCuO$\sub$5/. In this paper, the melting temperature obtained was l120$^{\circ}C$ and propel holding time could be obtained as 20 minute and the more holding time was not effective in the J$\sub$c/ improvement as well as the formation of Y$_2$BaCuO$\sub$5/.

  • PDF

플럭스처리에 의한 벌크비정질합금 스크랩의 비정질형성능 (Glass Forming Ability of Bulk Amorphous Alloy Scrap by Fluxing)

  • 강복현;김기영
    • 한국주조공학회지
    • /
    • 제30권3호
    • /
    • pp.94-99
    • /
    • 2010
  • When the returned scrap of bulk amorphous alloy is remelted, impurities such as oxides and intermetallic compounds increase. Glass forming ability of its scrap is deteriorated remarkably. Melt fluxing technique is introduced to enhance the glass forming ability during melting and freezing of bulk amorphous alloys. Cu and Zr based alloys are chosen. Small pieces of these alloy scraps and $B_2O_3$ flux are put together in a quartz tube. Cyclic heating and cooling are done by induction heating and water quenching or air cooling. Melting fluxing was effective for both Cu-based and Zr-based alloy, and their glass forming abilities were improved with increasing the number of fluxing.

압광을 이용한 금속계 비정질 합금의 균열전파 및 파괴전이 현상 가시화 연구 (Visualization of Crack Propagation and Fracture Transition in Bulk Metallic Glass using Mechano-Luminescence)

  • 김지식
    • 소성∙가공
    • /
    • 제20권4호
    • /
    • pp.303-308
    • /
    • 2011
  • Using a mechano-luminescent(ML) paint, which allows the visualization of fast propagating crack under conventional loading conditions, a catastrophic fracture mechanism associated to crack tip melting and wake bridging in bulk metallic glass, is described in this paper. Fracture occurs in two steps with, first, crack initiation from the mechanically machined sharp notch tip in a rectangular shaped compact tension specimen and melting of its tip due to intense shear deformation within very few deformation bands. Then, the crystalline phase in the glass matrix gradually converts the molten crack into a conventional bridged crack as it propagates.

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

적외선 광학렌즈용 칼코게나이드 유리의 Glass melting 조건에 따른 특성 변화 (Effect of Glass Melting Conditions on the Structural Properties of Chalcogenide Glasses for Infrared Optics)

  • 박흥수;이현용;차두환;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.167-167
    • /
    • 2010
  • Ge-Sb-Se계 칼코게나이드 유리의 Melting 조건변화에 따른 특성변화를 연구하였다. Glass melting 조건(homogenization-temperature, homogenization-time, annealing) 에 따라 제작된 칼코게나이드 유리 bulk를 FT-IR, XRD, SEM 등의 분석장비를 이용하여 특성을 분석하였다. Homogenization temperature가 높을수록 석영관 급냉 시 발생되는 mechanical stress와 내부응력차로 인해 칼코게나이드 유리 깨짐현상이 증가하였으며 조성비와 melting 조건에 따라 XRD분석에서 확인되지 않는 미소결정이 SEM 분석결과 관찰되었다. 본 연구를 통해 칼코게나이드 유리의 melting 조건에 따른 경향성을 확인할 수 있었다.

  • PDF

파라핀 슬러리의 생성 및 관내 대류열전달에 관한 연구 (Formation of a paraffin slurry and its convective heat transfer in a circular pipe)

  • 최은수
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.50-60
    • /
    • 1998
  • As a method to develop an enhanced heat transfer fluid, the fine particles of a phase-change material were mixed with a conventional heat transfer fluid. Paraffin, which can be obtained easily in domestic market, was used for the phase-change material and water was used as a carrier fluid. Fine liquid particles of paraffin were formed in water as an emulsion by using an emulsifier, and they were cooled rapidly to become solid particle, resulting in paraffin slurry. The average diameter of produced solid particles was inversely proportional to the amount of the added emulsifier, which was theoretically proved. The produced paraffin slurry was tested thermally in heat transfer test section having a constant-heat-flux boundary condition. The test section was made of a circular stainless-steel pipe, which was directly heated by the power supply having a maximum of 50 Volts-500 Amperes. DSC(Differential scanning calorimeter) tests showed that two kinds of phase change were involved in the melting of paraffin, and it was explained in two different ways. A five- region-melting model was developed by extending the conventional three-region-melting model, and was used to obtain the local bulk mean temperatures of paraffin slurry in the heating test section. The local heat transfer coefficient showed a maximum where the bulk mean temperature of the paraffin slurry reached at the melting temperature of paraffin.

Molecular Dynamics Simulations on Melting Properties of Free Icosahedral Copper Clusters

  • Kang, Jeong-Won;Hwang, Ho-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2003
  • We have studied the size confinement effect on the properties of melting-like transition of small icosahedral copper clusters using a classical molecular dynamics simulation based on a well fitted empirical potential. We investigated the caloric curves of icosahedron nanoclusters and the significant depression in the melting temperatures of the copper nanoclusters was compared with that of the bulk copper. A structural transitions from decahedral to icosahedral shapes were shown. As the cluster size increased, the melting temperature increased, and the latent heat increased but seem to be saturated. However, the specific heat was unrelated to the cluster size.