DOI QR코드

DOI QR Code

Molecular Dynamics Simulations on Melting Properties of Free Icosahedral Copper Clusters

  • Kang, Jeong-Won (Institute of Science and Technology, Department of Electronic Engineering, Chung-Ang University) ;
  • Hwang, Ho-Jung (Institute of Science and Technology, Department of Electronic Engineering, Chung-Ang University)
  • Published : 2003.02.01

Abstract

We have studied the size confinement effect on the properties of melting-like transition of small icosahedral copper clusters using a classical molecular dynamics simulation based on a well fitted empirical potential. We investigated the caloric curves of icosahedron nanoclusters and the significant depression in the melting temperatures of the copper nanoclusters was compared with that of the bulk copper. A structural transitions from decahedral to icosahedral shapes were shown. As the cluster size increased, the melting temperature increased, and the latent heat increased but seem to be saturated. However, the specific heat was unrelated to the cluster size.

Keywords

References

  1. R. Kusche, Th. Hippler, M. Schmidt, B. von Issendorff, and Haberland H., 'Melting of free sodium clusters', Eur. Phys. J. D, Vol. 9, P. 1, 1999
  2. S. Carnalla, A. Posada, and I. L. Garz$\`o$n, 'Vibrational properties of nickel and gold clusters', Nanostructured Materials, Vol. 3, p. 385, 1993 https://doi.org/10.1016/0965-9773(93)90103-I
  3. M. Schmidt, R. Kusche, B. Issendorff, and H. Haberland, 'Irregular variations in the melting point of size selected atomic clusters', Nature, Vol. 393, p. 238, 1998 https://doi.org/10.1038/30415
  4. J. Jellinek, T. L. Beck, and R. S. Berry, 'Solidliquid phase changes in simulated isoenergetic $Ar_{13}$', J. Chem. Phys., Vol. 84, p. 2783, 1986 https://doi.org/10.1063/1.450303
  5. J. Jellinek and I. L. Garz$\`o$n, 'Melting of gold clusters', Z. Phys. D, Vol. 20, p. 239, 1991 https://doi.org/10.1007/BF01543982
  6. I. L. Garz$\`o$n and J. Jellinek, 'Structural and dynamical properties of transition metal clusters', Z. Phys. D, Vol. 20, p. 235, 1991 https://doi.org/10.1007/BF01543981
  7. N. T. Wilson and R. T. Johnston, 'Modelling gold clusters with an empirical many body potential', Eur. Phys. J. D, Vol. 12, p. 161, 2000 https://doi.org/10.1007/s100530070053
  8. K. Michaelian, N. Rendon, and I. L. Garzon, 'Structure and energetics of Ni, Ag, and Au nanoclusters', Phys. Rev. B, Vol. 60, p. 2000, 1999 https://doi.org/10.1103/PhysRevB.60.2000
  9. S. Erkoc and T. Yilmaz, 'Molecular dynamics simulations of silver clusters', Physica E, Vol. 5, p. 1, 1999 https://doi.org/10.1016/S1386-9477(99)00036-3
  10. S. Erkoc, 'Stability of gold clusters: molecular dynamics simulations', Physica E, Vol. 8, P. 210, 2000 https://doi.org/10.1016/S1386-9477(00)00158-2
  11. T. X. Li, S. Y. Yin, Y. L. Ji, B. L. Wang, G. H. Wang, and J. J. Zhao, 'A genetic algorithm study on the most stable disordered and ordered configurations of $Au_{38-55}$', Phys. Lett. A, Vol. 267, p. 403, 2000 https://doi.org/10.1016/S0375-9601(00)00120-1
  12. C. R. A. Catlow, V. L. Bulatov, and R.W. Grimes, 'Computational studies of the structures, energetics and dynamics of clusters', Nucl. Instru. Meth. Phys. B, Vol. 122, p. 301, 1997 https://doi.org/10.1016/S0168-583X(96)00654-4
  13. L. Rongwu, P. Zhengying, and H. Yukun, 'Molecular dynamics simulations of slow copper cluster deposition', Phys. Rev. B, Vol. 53, p. 4156, 1996 https://doi.org/10.1103/PhysRevB.53.4156
  14. T. X. Li, S. M. Lee, S. J. Han, and G. H. Wang, 'Structural transitions of Au55 isomers', Phys. Lett. A, Vol. 300, p. 86, 2002 https://doi.org/10.1016/S0375-9601(02)00728-4
  15. I.L. Garz$\`o$n and A. Posada Amarillas, 'Structural and vibrational analysis of amorphous Au$Au_{55}$, clusters', Phys. Rev. B, Vol. 54, p. 11796, 1996 https://doi.org/10.1103/PhysRevB.54.11796
  16. I. L. Garz$\`o$n, K. Michaelian, M. R. Beltr$\`a$n, A. Posada Amarillas, P. Ordej$\`o$n, E. Artacho, D. S$\`a$nchez Portal, and J. M. Soler, 'Lowest energy structures of gold nanoclusters', Phys. Rev. Lett., Vol. 81, p. 1600, 1998 https://doi.org/10.1103/PhysRevLett.81.1600
  17. B. Pauwls, G. van Tendeloo, W. Nouwen, L. T. Kuhn, P. Lievens, H. Lei, and M. Hou, 'Low energy deposited Au clusters investigated by highresolution electron microscopy and molecular dynamics simulations', Phys. Rev. B, Vol. 62 p. 10383, 2000 https://doi.org/10.1103/PhysRevB.62.10383
  18. G. Canizal, J. A. Ascencio, J. Gardea Torresday, and M. J. Yacaman, 'Multiple twinned gold nanorods grown by bio reduction techniques', J. Nanoparticle Research, Vol. 3, p. 475, 2001 https://doi.org/10.1023/A:1012578821566
  19. Z. R. Dai, S. Sun, and Z. L. Wang, 'Shapes, multiple twins and surface structures of monodisperse FePt magnetic nanocrystals', Surf. Sci., Vol. 505, p. 325, 2002
  20. M. Jos$\`e$-Yacam$\`a$n, M. Mar$\`i$n-Almazo, and J. A. Ascencio, 'High resolution TEM studies on palladium nanoparticles', J. Mol. Catalysis A: Chemical, Vol. 173, p. 61, 2001 https://doi.org/10.1016/S1381-1169(01)00145-5
  21. F. Cleri and V. Rosato, 'Tight binding potentials for transition metals and alloys', Phys. Rev. B, Vol. 48, p. 22, 1993 https://doi.org/10.1103/PhysRevB.48.22
  22. G. D'Agostino, A. Pinto, and S. Mobilio, 'Simulated gold clusters and relative extended xray absorption fine structure spectra', Phys. Rev. B, Vol. 48, p. 14447, 1993 https://doi.org/10.1103/PhysRevB.48.14447
  23. J. M. Soler, M. R. Beltr$\`a$n, K. Michaelian, I. L. Garz$\`o$n, P. Ordej$\`o$n, D. S$\`a$nchez-Portal and E. Artacho, 'Metallic bonding and cluster structure', Phys. Rev. B, Vol. 61, p. 5771, 2000 https://doi.org/10.1103/PhysRevB.61.5771
  24. J. W. Kang and H. J. Hwang, 'Molecular dynamics simulation study on the melting of ultra thin copper nanowires', J. Korean Phys. Soc., Vol. 40, p. 946, 2002
  25. J. W. Kang and H. J. Hwang, 'Molecular dynamics study of the interaction between energetic Al clusters and an Al surface', Phys. Rev. B, Vol. 64, p.014108, 2001 https://doi.org/10.1103/PhysRevB.64.014108
  26. J. W. Kang, K. S. Choi, K. R. Byun, and H. J. Hwang, 'Molecular dynamics study of Al atom and A155 cluster deposition on Al substrate', J. Korean Phys. Soc., Vol. 36, p. 248, 2000
  27. J. W. Kang and H. J. Hwang, 'Pentagonal multishell Cu nanowires', J. Phys. : Condens. Matter, Vol. 14, p. 2629, 2002
  28. J. W. Kang, K. S. Choi, J. C. Kang and H. J. Hwang, 'Molecular dynamics simulations of film growth by energetic aluminum cluster impact', J. Korean Phys. Soc., Vol. 38, p. 158, 2001
  29. J. W. Kang and H. J. Hwang, 'Molecular dynamics simulations of ionized cluster beam deposition: case of study of aluminum', Comp. Mater. Sci., Vol. 21, p. 509, 2001 https://doi.org/10.1016/S0927-0256(01)00199-9
  30. M. P. Allen and D. J. Tildesley, 'Computer Simulation of Liquids', Clarendon press, Oxford, 1987
  31. F. Ding, H. Li, J. Wang, W. Shen, and G. Wang, 'Elastic deformation and stability in pentagonal nanorods with multiple twin boundaries', J. Phys. : Condens. Matter, Vol. 14, p. 113, 2002 https://doi.org/10.1088/0953-8984/14/1/310
  32. J. W. Kang and H. J. Hwang, 'Atomic scale simulations of polyhedral Cu nanorods', Nanotechnology, Vol. 13, p. 524, 2002 https://doi.org/10.1088/0957-4484/13/4/316
  33. D. Halliday, R. Resnick and J. Walker, 'Fundamentals of Physics', Extended Fifth Edition, John Wiley & Sons, Inc., 1997
  34. C. Kittel, 'Introduction to Solid State Physics', Wiley, New York, 1966
  35. G. Simmons and H. Wang, 'Single Crystal Elastic Constants and Calculated Aggregated Properties', MIT press, Cambridge, 1971
  36. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelly, 'Selected Values of the Thermodynamics Properties of Binary Alloys', American Society for Metals, Metal Park, 1973