• Title/Summary/Keyword: Bulk graphite

Search Result 50, Processing Time 0.029 seconds

Crystallinity Changes Heat Treatment of Coal Tar Pitch and Phenol Resin used as a Binder for Bulk Graphite Manufacturing (벌크흑연 제조를 위한 결합재로 이용되는 콜타르 핏치 및 페놀수지의 열처리에 의한 결정성 변화)

  • Lee, Sang-Min;Lee, Hyun-yong;Lee, Sang-Hye;Roh, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • The coal tar pitch and phenol resins are used as binders in artificial graphite manufacture, but there are differences in the initial carbon compound structure. According to the carbonization temperature, it can be expected that there are differences in thermal decomposition behavior, microstructure, and crystallinity change. These properties of the coal tar pitch and phenol resins were compared to each other. As the carbonization temperature of coal tar pitch and phenol resin increases, crystallinity tends to increase. The coal tar pitch went through the carbonization process through the liquid, and it was confirmed that the crystallinity changed rapidly in the temperature range of 500 and 600 ℃, where the microstructure changed quickly. These results confirmed the close correlation between microstructure and crystallinity.

Preparation and Characteristic of Carbon/Carbon Composites with Coal-tar and Petroleum Binder Pitches (석탄계 및 석유계 피치가 함침된 탄소/탄소 복합재료 제조 및 특성)

  • Yang, Jae-Yeon;Park, Sang-Hee;Park, Soo-Jin;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.406-412
    • /
    • 2015
  • Unidirectional carbon/carbon (C/C) composites were manufactured using phenolic resins as a precursor of the carbonized matrix throughout a one-step manufacturing process. Also, molybdenum oxide ($MoO_3$) and binder pitches were impregnated with phenolic resins to improve the bulk density and mechanical property of the C/C composites. In this study, the influence of $MoO_3$ and binder pitches on mechanical properties of the C/C composites were investigated by measuring flexural strength (${\sigma}_f$) and interlaminar shear strength (ILSS). The results show that the enhancement of interfacial adhesions between the fibers and matrix resins of the C/C composites with $MoO_3$ and binder pitches which led to the improvement of mechanical properties of the C/C composites. This indicates that the presence of $MoO_3$ and binder pitches in C/C composites can develop the graphite structure and increase the bulk density.

Synthesis of Cu-coated Ni-based Bulk Metallic Glass Powders by Gas Atomization and Spray Drying Process

  • Kim, Byoung-Kee;Kim, Yong-Jin;Kim, Jin-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.936-936
    • /
    • 2006
  • Bulk amorphous materials have been intensively studied to apply for various advanced industry fields due to their high mechanical, chemical and electrical properties. These materials have been produced by several techniques such as mechanical alloying, melt spinning and gas atomization, etc. Among them, the atomization is the most potential technique for commercialization due to high cooling rate during solidification of the melt and mass productivity. However, the amorphous powders still have some limitations because of their low ductility and toughness. Therefore, intensive efforts have to be carried out to increase the ductility and toughness. In this study, the Ni-based amorphous powder was produced by the gas atomization process. And in order to increase the ductile toughness, ductile Cu phase was coated on the Ni amorphous powder by spray drying process. The characteristics of the as-synthesis powders have been examined and briefly mentioned. The master alloy with $Ni_{57}Zr_{20}Ti_{16}Si_2Sn_3$ was prepared by vacuum induction melting furnace with graphite crucible and mold. The atomization was conducted at $1450^{\circ}C$ under the vacuum of $10^{-2}$ torr. The gas pressure during atomization was varied from 35 to 50 bars. After making the Ni amorphous powders, the spray drying was processed to produce the Cu -coated Ni amorphous composite powder. The amorphous powder and Cu nitrate solution were mixed together with a small amount of binder and then it was sprayed at temperature of $130^{\circ}C$ and rotating speed of 15,000 R.P.M.

  • PDF

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

Preparation and Characterization of β-C3N4 in Presence of Seed Carbon Nitride Films Deposited by Laser-Electric Discharge Method

  • Kim, J.I.;Zorov, N.B.;Burdina, K.P
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure was developed for preparing bulk carbon nitride crystals from a polymeric $\alpha$ -C$_3$N$\_$4.2/ at high pressure and temperature in the presence of seeds of crystalline carbon nitride films prepared by a high voltage discharge plasma combined with pulsed laser ablation of graphite target. The samples were evaluated by x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrate that the nitrogen composition in $\alpha$ -C$_3$N$\_$4.2/ material initially containing more than 58% nitrogen decreases during the annealing process and reaches a common, stable composition of ~45%. The thermobaric experiments were performed at 10-77 kbar and 350-1200 $\^{C}$.

Electrochemical Behavior of the Reduction of Thin Films of $Ag_3Fe(CN)_6$

  • Moon Seongbae;Moon Jung Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1042-1045
    • /
    • 1994
  • A thin film of silver ferricyanide (Ag$_3$Fe(CN)$_6$) on a platinum or gold substrates can be reduced electrochemically to the salt of silver ferrocyanide in potassium nitrate solution. The color of these films are orange and these films are shown to be electrochromic. The voltammogram is shown the asymmetry of the oxidation compared to the reduction wave under various supporting electrolytes. The standard heterogeneous electron-transfer rate for these films and bare Pt electrode were 0.49 ${\times}$ l0$^{-2}$ and 1.30 ${\times}$ l0$^{-2}$ cm/s, respectively, obtained using a rotating disc electrode. Rough D$_0$ values, evaluated from the Levich equation, for Fe(CN)$_6^{3-/4-}$ at both SF thin film and a bare Pt disc electrode were shown as 1.2l ${\times}$ l0-6 and 0.94 ${\times}$ l0$^{-6}$ cm$^2$/s, respectively. The conductivities, as determined from the slops of the i-V curves for a ca. 1 mm sample for dried SF potassium rich and deficient bulk samples pressed between graphite electrodes, were 9.34 ${\times}$ l0$^{-9}$ and 5.80 ${\times}$ l0$^{-9}$ (${\Omega}$${\cdot}$cm)$^{-1}$, respectively.

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF

Electrochemistry and Electrokinetics of Prussian Blue Modified Electrodes Obtained Using Fe(III) Complex

  • 문성배;문정대
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.819-823
    • /
    • 1995
  • Thin films of two kinds of Prussian Blue (PB)-modified, using iron(Ⅲ) complex instead of conventional FeCl3, were prepared on a gold substrate and these films were able to be electrochemically reduced in potassium nitrate solution. In case of PB-modified films prepared from Fe(Ⅲ)-ethylenediamine-N,N'-diacetic acid (FeEN3+)/K3Fe(CN)6 solution, the mid-peak potential was 0.156 V in 0.1 M KNO3 and it was found that potassium ion migrates into or out of the film during the electrolysis. These films were shown to be electrochromic. These films exhibited smaller peak separation than those formed from Fe(Ⅲ)-tartaric acid (FeTA3+)/K3Fe(CN)6 system. The diffusion coefficient of Fe(CN)63-/4- redox couple, evaluated using the fabricated Au rotating disc electrode(rde) previously reported, was in good agreement with the existing data. Two experimental procedures, including the voltammetry at relatively low scan rates and the rde study, have been used in order to characterize the electrode kinetics. The electrode kinetics of some redox couples (FeEN2+-FeEN3+ and FeTA2+-FeTA3+) on both PB-modified thin films and bare Au electrode were studied using a Au rde. In all cases the rate constants of electron transfer obtained with the PB-modified film electrodes were only slightly less than those obtained for the same reaction on bare Au disc electrodes. The conductivities, as determined from the slopes of the i-V curves for a ca. 1 mm sample for dried PB-modified potassium-rich and deficient bulk samples pressed between graphite electrodes, were 6.21 × 10-7 and 2.03 × 10-7(Ω·cm)-1, respectively.

Fabrication and densification of Heusler Fe2VAl alloy powders by mechanical alloying (MA법에 의한 Heusler Fe2VAl 합금분말의 제조 및 치밀화)

  • Kim, Kwang-Duk;Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • We have applied mechanical alloying (MA) to produce Heusler $Fe_2VAl$ thermoelectric alloy using a mixture of elemental $Fe_{50}V_{25}Al_{25}$ powders. An optimal milling and heat treatment conditions to obtain the single phase of Fe2VAl compound with fine microstructure were investigated by X-ray diffraction and differential scanning calorimetry (DSC) measurement. The $Fe_{50}V_{25}Al_{25}$ MA sample ball-milled for 60 hours exhibits a bcc ${\alpha}$-(Fe,V,Al) solid solution. Single phase of Heusler $Fe_2VAl$ compound can be obtained by MA of $Fe_{50}V_{25}Al_{25}$ mixture for 60 hours and subsequently heated up to $700^{\circ}C$. Sintering of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $900{\sim}1000^{\circ}C$ under 60 MPa. The Vickers hardness of bulk sample sintered at $1000^{\circ}C$ was high value of Hv 870. All compact bodies have a high relative density above 90 % with metallic glare on the surface.

Study on the screening method for determination of heavy metals in cellular phone for the restrictions on the use of certain hazardous substances (RoHS) (유해물질 규제법(RoHS)에 따른 휴대폰 내의 중금속 함유량 측정을 위한 스크리닝법 연구)

  • Kim, Y.H.;Lee, J.S.;Lim, H.B.
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • It is of importance that all countries in worldwide, including EU and China, have adopted the Restrictions on the use of certain Hazardous Substances (RoHS) for all electronics. IEC62321 document, which was published by the International Electronics Committee (IEC) can have conflicts with the standards in the market. On the contrary Publicly Accessible Specification (PAS) for sampling published by IEC TC111 can be adopted for complementary application. In this work, we tried to find a route to disassemble and disjoint cellular phone sample, based on PAS and compare the screening methods available in the market. For this work, the cellular phone produced in 2001, before the regulation was born, was chosen for better detection. Although X-ray Fluorescence (XRF) showed excellent performance for screening, fast and easy handling, it can give information on the surface, not the bulk, and have some limitations due to significant matrix interference and lack of variety of standards for quantification. It means that screening with XRF sometimes requires supplementary tool. There are several techniques available in the market of analytical instruments. Laser ablation (LA) ICP-MS, energy dispersive (ED) XRF and scanning electron microscope (SEM)-energy dispersive X-ray (EDX) were demonstrated for screening a cellular phone. For quantitative determination, graphite furnace atomic absorption spectrometry (GF-AAS) was employed. Experimental results for Pb in a battery showed large difference in analytical results in between XRF and GF-AAS, i.e., 0.92% and 5.67%, respectively. In addition, the standard deviation of XRF was extremely large in the range of 23-168%, compared with that in the range of 1.9-92.3% for LA-ICP-MS. In conclusion, GF-AAS was required for quantitative analysis although EDX was used for screening. In this work, it was proved that LA-ICP-MS can be used as a screening method for fast analysis to determine hazardous elements in electrical products.