• Title/Summary/Keyword: Bulk emulsion

Search Result 41, Processing Time 0.021 seconds

The antioxidant ability of nutmeg ethanolic extract in bulk oil and oil-in-water emulsion matrices (식물성 유지 및 수중유적형 유화계에서 육두구 종자 에탄올 추출물의 항산화활성 평가)

  • Ji-Eun Kim;Ji-Yun Bae;Mi-Ja Kim
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.334-346
    • /
    • 2023
  • The antioxidant ability of 80% ethanolic extract of nutmeg seed (NM80) was evaluated using in vitro assays and bulk oil and oil-in-water (O/W) emulsion matrices. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation radical scavenging, and oxygen radical antioxidant capacity (ORAC) in vitro assays were used to evaluate the antioxidant ability of the extract. The DPPH radical scavenging activities of 25, 50, 100, and 200 ㎍/mL NM80 were 12.5, 20.9, 35.1, and 62.8%, respectively, while the ABTS cation radical scavenging activities were 2.7, 6.5, 30.5, and 29.8%, respectively, demonstrating a dose-dependent effect. The ORAC value was significantly higher at an NM80 concentration of 25 ㎍/mL than the positive control (p<0.05). The conjugated dienoic acid (CDA), ρ-anisidine, and tertiary butyl alcohol values in 90-min-heated corn oil containing 200 ppm of NM80 were significantly reduced by 3.26, 16.94, and 17.34%, respectively, compared to those for the sample without NM80 (p<0.05). However, the headspace oxygen content and CDA value in the O/W emulsion containing 200 ppm of NM80 at 60℃ had 6.29 and 82.85% lower values, respectively, than those for the sample without NM80 (p<0.05). The major volatile compounds of NM80 were allyl phenoxyacetate, eugenol acetate, and eugenol. NM80 could be an effective natural antioxidant in lipid-rich foods in bulk oil or O/W emulsion matrix.

Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix

  • Lee, Sang-Jun;Oh, Sumi;Kim, Mi-Ja;Sim, Gun-Sub;Moon, Tae Wha;Lee, JaeHwan
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • Background: Explosive puffing can induce changes in the chemical, nutritional, and sensory quality of red ginseng. The antioxidant properties of ethanolic extracts of red ginseng and puffed red ginseng were determined in bulk oil and oil-in-water (O/W) emulsions. Methods: Bulk oils were heated at $60^{\circ}C$ and $100^{\circ}C$ and O/W emulsions were treated under riboflavin photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-picrylhudrazyl, 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, ferric reducing antioxidant power, total phenolic content, and total flavonoid content, were also performed. Results: The total ginsenoside contents of ethanolic extract from red ginseng and puffed red ginseng were 42.33 mg/g and 49.22 mg/g, respectively. All results from above in vitro antioxidant assays revealed that extracts of puffed red ginseng had significantly higher antioxidant capacities than those of red ginseng (p < 0.05). Generally, extracts of puffed red and red ginseng had high antioxidant properties in riboflavin photosensitized O/W emulsions. However, in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated rates of lipid oxidation, depending on treatment temperature and the type of assay used. Conclusion: Although ethanolic extracts of puffed red ginseng showed stronger antioxidant capacities than those of red ginseng when in vitro assays were used, more pro-oxidant properties were observed in bulk oils and O/W emulsions.

The Effects of the Content of Hydroxyethyl Methacrylate in Fluorine-containing Acrylate Copolymers on Physical Properties (불소함유 아크릴계공중합체에서 히드록시에틸메타크릴레이트 함량에 따른 물리적 특성 변화)

  • Kim, KiSang;Shim, Sang-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.502-508
    • /
    • 2018
  • The acrylate copolymer having good coating, water-repellent and adhesion properties was designed and prepared. We prepared copolymers with high yield of > 95% using methyl methacrylate(MMA), 2,2,2-trifluoroethyl acrylate (FMA) and 2-hydroxyethyl methacrylate monomers(HEMA) by either bulk or emulsion polymerization techniques. The $^1H-NMR$ spectrum was used to identify chemical structure and DSC and DMA analysis were conducted. As a result, the glass transition temperature decreased by $3^{\circ}C$ as FMA content increased from 5% to 10%, and decreased by $2{\sim}8^{\circ}C$ when HEMA content increased from 5 % to 10 %. The physical properties were measured using Instron and TGA. As FMA or HEMA content increased by 10%, tensile strength decreased from 29 MPa to 22 MPa and Td decreased from $200^{\circ}C$ to $180^{\circ}C$ in both bulk and emulsion. The contact angle relatively decreased as hydrophilic HEMA content increased.

The Effects of the Content of Isobornyl Methacrylate in Acrylate Copolymers on Physical Properties (아크릴계 공중합체에서 이소보닐 메타크릴레이트의 함량에 의한 물리적 특성 변화)

  • Kim, Ki Sang;Shim, Sang-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.771-776
    • /
    • 2016
  • The acrylate copolymer having good thermal stability, coating and adhesion properties was designed and prepared. We prepared copolymers in >95% high yield using methyl methacrylate, isobornyl methacrylate and 2-hydroxyethyl methacrylate monomers by the bulk and emulsion polymerization techniques. The $^1H$-NMR spectrum was used to identify chemical structure and glass transition temperatures increased from $123^{\circ}C$ to $140^{\circ}C$ confirmed by DSC, DMA and TGA analysis. In addition, as the content of IBMA increased, storage modulus and thermal decomposition temperature increased. As the content of IBMA increased from 10% to 30% in the composition for the entire monomer, tensile strength increased from 22 to 30 MPa in both polymers prepared by bulk and emulsion techniques. The contact angle increased from 70 to up to 88 degrees due to hydrophobic property of IBMA.

A Case Study of Minimizing Construction Time in Long and Large Twin Tube Tunnel (대단면 장대터널 공기단축 사례연구)

  • No Sang-Lim;Noh Seung-Hwan;Lee Sang-Pil;Kim Moon-Ho;Seo Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.177-184
    • /
    • 2005
  • The Sapaesan tunnel, the longest twin tube tunnel (4km) in Korea with 4 lanes each, is under construction with two years of delayed schedule because of the strong opposition from environmental bodies. Therefore, maximizing the construction efficiency was needed in tunnel project to compensate for time delay. This study includes improvements in the construction of the Sapaesan tunnel such as increasing excavation length and changing excavation sequence. In this paper the system for predicting tunnel face ahead is also introduced. Bulk-Emulsion explosive and Cylinder-Cut method were adopted in tunnel blasting to increase the excavation length. Optimum tunnel excavation step was designed to make up delayed time. Tunnel foe mapping, TSP survey and geological prediction system using computerized jumbo-drill were performed fnr safe construction of long and large twin tube tunnel.

Underwater Blasting for Removing Todo Island in the Sea of Pusan Newport by Using Bulk Emulsion Explosives and Non-electric Detonators (벌크 에멀젼 폭약과 비전기뇌관을 이용한 부산신항 토도 제거 수중발파)

  • An, Bong-Do;Kim, Gab-Soo;Lee, Soo-Hyung;Jung, Byung-Youl;Lim, Dae-Kyu
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.37-45
    • /
    • 2020
  • Todo was an uninhabited island located in the sea of Pusan Newport. It was a small island with the height of 32 m above sea level, and its area including the submerged part was approximately 24,400 ㎡. Unfortunately, the island was located exactly in the middle of the narrow entrance way to the North and South Container Wharfs of Pusan Newport so that a number of ships had to turn quickly to avoid collision with the island, which frequently caused collisions with other ships or cranes. To avoid such a danger and make the water way wider and deeper, the Ministry of Oceans and Fisheries decided to remove the island. This was believed to make even super-large vessels operate safely in the sea of Pusan Newport so that the competitiveness of the port could be highly enhanced. This paper describes in detail the whole process of the removing work, which was the first case of successful underwater blasting operation using bulk emulsion explosives and non-electric detonators to remove a whole island in South Korea.

A Study on the Preparation of PBAST/PVA Double Layered Hollow Microspheres (PBAST/PVA 이중층 중공미세구의 제조에 관한 연구)

  • Song, Myung-Sook;Woo, Je-Wan
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.256-264
    • /
    • 2008
  • In this study, using PBAST (poly(butylene adipate-co-succinate-co-terephthalate)) which was eco-friendly biodegradable aliphatic polyester, PBAST/PVA (poly(vinyl alcohol)) double-layered hollow microspheres were prepared with the water/oil/water multiple emulsion ($W_1/O/W_2$) method. The double-layered hollow microspheres were manufactured with the yield of 30.92% when the concentration of polymer PBAST in organic phase was 5 wt%, the concentration of PVA in inner aqueous phase was 5 wt%, the volume ratio of $W_1/O$ emulsion to outer aqueous phase was 1:4.5, and when co-surfactants that had large gap in HLB (hydrophile-lipophile balance) value were used. The bulk density of prepared hollow microsphere was 0.180 g/ml and particle size was $1.5{\sim}3\;{\mu}m$.

  • PDF

An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites (섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.145-155
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced fly ash$\cdot$lime$\cdot$gypsum composites are presented in this paper. 'The composites using fly ash, lime, and gypsum were prepared with various fibers (PAN-derived and Pitch-derived carbon fiber, alkali-resistance glass fiber) and a small amount of polymer emulsion-styrene butadiene rubber latex (SBR). As the test results show, the manufacturing process technology of fly ash$\cdot$lime$\cdot$gypsum composites was developed and its optimum mix proportions were successfully proposed. And the flexural strength and toughness of fiber reinforced fly ash$\cdot$lime $\cdot$gypsum composites were increased remarkably by fiber contents, but the compressive strength of the composites were influenced by the kinds fiber more than by the fiber contents. Also, the addition of a polymer emulsion to the composites decreased the bulk specific gravity, but the compressive and flexural strength, and the toughness of the composites were not influenced by it, but were considerably improved by increasing fiber contents.