• Title/Summary/Keyword: Bulk Cargo

Search Result 96, Processing Time 0.025 seconds

Multi-Objective Onboard Measurement from the Viewpoint of Safety and Efficiency (안전성 및 효율성 관점에서의 다목적 실선 실험)

  • Sang-Won Lee;Kenji Sasa;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.116-118
    • /
    • 2023
  • In recent years, the need for economical and sustainable ship routing has emerged due to the enforced regulations on environmental issues. Despite the development of weather forecasting technology, maritime accidents by rough waves have continued to occur due to incorrect weather forecasts. In this study, onboard measurements are conducted to observe the acutal situation on merchant ships in operation encountering rough waves. The types of measured data include information related to navigation (Ship's position, speed, bearing, rudder angle) and engine (engine revolutions, power, shaft thrust, fuel consumption), weather conditions (wind, waves), and ship motions (roll, pitch, and yaw). These ship experiments was conducted to 28,000 DWT bulk carrier, 63,000 DWT bulk carrier, 20,000 TEU container ship, and 12,000 TEU container ship. The actual ship experiment of each ship is intended to acquire various types of data and utilize them for multi-objective studies related to ship operation. Additionally, in order to confirm the sea conditions, the directional wave spectrum was reproduced using a wave simulation model. Through data collection from ship experiments and wave simulations, various studies could be proceeding such as the measurement for accurate wave information by marine radar and analysis for cargo collapse accidents. In addition, it is expected to be utilized in various themes from the perspective of safety and efficiency in ship operation.

  • PDF

A Study on the Factors for Selecting Charterers in the Dry Bulk Shipping Market (건화물 벌크 해운시장에서 용선업체 선정요인에 관한 연구)

  • Jun-Ho Lee;Young-Sin Lee;Choong-Bae Lee
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.123-140
    • /
    • 2023
  • Maritime transportation is one of the oldest means of transportation utilized by mankind, and it has significantly contributed to the advancement of civilization by efficiently transporting bulk cargo at a low cost. The study aim to identify the factors influencing the selection of shipping companies in the bulk shipping market and provide insights for improving the competitiveness of shipping-related companies. To achieve this goal, the Analytic Hierarchy Process (AHP) was employed. For the empirical analysis, previous research, interviews, and a pilot test were conducted to identify five top-level factors such as companies, vessels, operations, services, and transaction factors. Each top-level factor has four sub-factors. The results of the analysis, based on 80 valid questionnaires, are as follows: Firstly, in the selection of shipping companies, the priority of factors influencing the choice of shipping companies was as follows: vessel factors were the most important, followed by company, operations, relationship, and service factors. Secondly, when investigating the priority of sub-factors, the availability/appropriateness of vessels was the most crucial factor, followed by company characteristics, financial soundness, and the company's reputation in order. The implications of these findings suggest that shipowners should focus on securing more suitable vessels and enhancing their reputation in response to shippers' demand. Shippers, on the other hand, should consider maintaining a healthy financial structure as a crucial task in securing competitive shipping service providers.

A Study on Retrofitting BWTS using 3D Digital Design (3D Digital Design 기법을 이용한 BWTS 설치 설계 연구)

  • JEE, Jae-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.503-512
    • /
    • 2017
  • Over the past few years, as maritime trade and traffic were highly expanding, problem of invasive species via ballast water have been raised. In 1988, Canada and Australia had firstly experience that unexpected and hazardous species were observed on their own sea, they have issued the problem to MEPC under the IMO. At the end of many years of discussion, on the diplomatic conference in 13 Feb. 2004, "International Convention for the Control and Management of Ballast Water and Sediments of the Ship" was adopted. Requirements for entering into force of this Convention is that 30 countries ratify and world merchant marine fleet is more than 35% and BWM Convention will be effected after 12months from date satisfying conditions. With Finland ratifying the BWM Convention on 8 Sep. 2016, the fleet amounted to 35.1441% and ratification country became 52 countries. Therefore, after 12month, BWM Convention will be formally effected on 8 Sep. 2017. Ballast Water Treatment System is to be fitted in new ships as well as existing ships. Thus, there are concerns of ship owners to be suitably installed a variety typed BWTS in many kinds of vessels. As approaching for resolving these problems, engineering analysis was carried out research studies and detailed design to analyze to optimal installation space for retrofitting a BWTS using 3D Scanning method, targeting representative DWT 180K Bulk carrier of dry cargo vessels charged more 40% on worldwide vessel and mainly two type BWTS as electrolysis treatment type and ultra violet treatment type. Optimal design of 3D Scanning technology was applied to analyze four step process and the overall conclusion was described in this paper.

A Study on Minimum Weight Design of Horizontal Corrugated Bulkheads for Chemical Tankers (화학제품 운반선 수평 파형격벽의 최소중량설계에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.51-56
    • /
    • 2016
  • Corrugated bulkheads have many advantages compared to stiffened bulkheads, and they have thus been used for the cargo tank bulkheads of commercial vessels, such as bulk carriers, product oil carriers, and chemical tankers. Various studies have been carried out to find the optimum corrugation shape for bulk carriers, but optimum design studies for chemical tankers with bulkheads made of high-priced materials are scarce. The purpose of this study is to develop a minimum weight design method for horizontal corrugated bulkheads for a chemical tanker. An evolution strategy (ES) that searches for a reliable global optimum point was applied as an optimization technique, and the structural safety of the optimum design was verified through structural analysis using the finite element method (FEM). The results were compared with those of an existing ship, which showed a weight reduction of about 14% with equivalent structural strength.

A Study on the Enhancing Value-Added Activities in Busan Port (부산항 부가가치 창출 방안에 관한 연구)

  • Kang, Dal-Won;Lim, Dong-Seok;Nam, Ki-Chan;Choi, Chul-Hee;Lee, Dong-Woon
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • This dissertation analysed actuality and literatures aimed at optimizing added value of Busan Port. As far as the literatures are concerned, the limits and the direction to go of Busan Port have been reached through analysing and comparing Busan Port, Antwerp Port, and Rotterdam Port by their each function. While Rotterdam and Antwerp Port are each functioning as an integrated port disposing container freight, general freight and liquid cargo, the container of Busan port contributes over 88 percent of its cargo and the function of the others like bulk is scattered to Ulsan, Masan, and Jinjae Port. Hereby, Busan Port needs to develop its function so as not to duplicate its function with the others in Korea and add value of theirs each. As a result of the local experts about analysing actuality, it turn out that it is similar with the literatures. In macroscopic view, specialization mainly with container, general cargo disposal ability enforcement and etc. are the most important. In microscopic view, rear complex of container tier and the supply base of liquid energy.

A Study on the Development of Decision Support System for Tanker Scheduling (유조선 운항일정계획 의사결정지원 시스템의 개발에 관한 연구)

  • 김시화;이희용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.04a
    • /
    • pp.59-76
    • /
    • 1996
  • Vessels in the world merchant fleet generally operate in either liner or bulk trade. The supply and the demand trend of general cargo ship are both on the ebb however those trend of tankers and containers are ins light ascension. Oil tankers are so far the largest single vessel type in the world fleet and the tanker market is often cited as a texbook example of perfect competition. Some shipping statistics in recent years show that there has been a radical fluctuation in spot charter rate under easy charter's market. This implies that the proper scheduling of tankers under spot market fluctuation has the great potential of improving the owner's profit and economic performance of shipping. This paper aims at developing the TS-DSS(Decision Support System for Tanker Scheduling) in the context of the importance of scheduling decisions. TS-DSS is defined as a DSS based on the optimization models for tanker scheduling. The system has been developed through the life cycle of systems analysis design and implementation to be user-friendly system. The performance of the system has been tested and examined by using the data edited under several tanker scheduling has been tested and examined by using the data edited under several tanker scheduling scenarios and thereby the effectiveness of TS-DSS is validated satisfactorily. The authors conclude the paper with the comments of the need of appropriate support environment such as data-based DSS and network system for successful implementatio of the TS-DSS.

  • PDF

Changes of Mooring Force due to Structural Modification of a Barge Ship (바지선 구조변경이 계류력 변화와 안정성에 미치는 영향)

  • Park, Jung-Hong;Kim, Kwang-Hoon;Moon, Byung-Young;Jang, Tak-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.48-54
    • /
    • 2011
  • Structural modifications of a ship may cause a fatal accident such as sinking and wrecking of ship. Especially, barge ship can be easily reconstructed to load more bulk cargo. In this study, for a real accident case, change of mooring force due to structural modification was analyzed to evaluate accident risk. A two dimensional dynamic model for the barge ship was constructed to compute mooring forces with related to floating motion. The equation of motion was established in Matlab code and buoyancy was calculated by using direct integration of submerged volume. The results showed that wind force, current force, and mooring force after rebuilding was approximately 4.3 kN, 14 kN, 1,561 kN respectively. The maximum force of mooring force according to the length of mooring cable were 1,614 kN at 30 m of mooring cable. Thus, an arbitrary modification of ship lead instability and unreliable result so that illegal rebuilding of ship should be avoided.

Study on the Load Analysis in Accordance with the Contact Position between a High-Load Long-Pitch Roller Chain and Sprocket (고부하 롱피치 롤러체인과 스프라켓 접촉 위치에 따른 하중분석에 관한 연구)

  • Kim, Chang-Uk;Park, Seung Bin;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • In the present study, the long-pitch roller-chain of a continuous ship unloader is studied. It is the vertical excavating and transporting the cargo has carried in bulk amount. The size of the pitch in the long-pitch roller chain is about 350 mm. The finite element technique is used for the structural safety of the roller chain. The objective of the study is to perform a dynamic analysis of the load at the point of contact with the sprocket of the roller chain, and analyze each point in the stress of the chain's components by using load. From the tooth sprocket optimization analysis, the results show an optimal design. Static structural analysis was safe. Contact analysis results show the greatest stress on the sprocket. By increasing the tooth size, the stress was reduced.

A Study on the Development of a Decision Support System for Tanker Scheduling (유조선 운항 일정계획 의사결정 지원시스템의 개발에 관한 연구)

  • 김시화;이희용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.27-46
    • /
    • 1996
  • Vessles in the world merchant fleet generally operate in either liner or bulk trade. The supply and the demand trend of general cargo ship are both on the ebb, however, those trend of tankers and containers are in slight ascension. Oil tankers are so far the largest single vessel type in the world fleet and the tanker market is often cited as a textbook example of perfect competition. Some shipping statistics in recent years show that there has been a radical fluctuation in spot charter rate under easy charterer's market. This implys that the proper scheduling of tankers under spot market fluctuation has the great potential of improving the owner's profit and economic performance of shipping. This paper aims at developing the TS-DSS(Decision Support System for Tanker Scheduling) in the context of the importance of scheduling decisions. The TS-DSS is defined as the DSS based on the optimization models for tanker scheduling. The system has been developed through the life cycle of systems analysis, design, and implementation to be user-friendly system. The performance of the system has been tested and examined by using the data edited under several tanker scheduling scenarios and thereby the effectiveness of TS-DSS is validated satifactorily. The authors conclude the paper with the comments on the need of appropriate support environment such as data-based DSS and network system for succesful implementation of the TS-DSS.

  • PDF

Optimization of ship inner shell to improve the safety of seagoing transport ship

  • Yu, Yan-Yun;Lin, Yan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.454-467
    • /
    • 2013
  • A practical Ship Inner Shell Optimization Method (SISOM), the purpose of which is to improve the safety of the seagoing transport ship by decreasing the maximum Still Water Bending Moment (SWBM) of the hull girder under all typical loading conditions, is presented in this paper. The objective of SISOM is to make the maximum SWBM minimum, and the section areas of the inner shell are taken as optimization variables. The main requirements of the ship performances, such as cargo hold capacity, propeller and rudder immersion, bridge visibility, damage stability and prevention of pollution etc., are taken as constraints. The penalty function method is used in SISOM to change the above nonlinear constraint problem into an unconstrained one, which is then solved by applying the steepest descent method. After optimization, the optimal section area distribution of the inner shell is obtained, and the shape of inner shell is adjusted according to the optimal section area. SISOM is applied to a product oil tanker and a bulk carrier, and the maximum SWBM of the two ships is significantly decreased by changing the shape of inner shell plate slightly. The two examples prove that SISOM is highly efficient and valuable to engineering practice.