• Title/Summary/Keyword: Built-in spindle motor

Search Result 58, Processing Time 0.024 seconds

Heat Analysis of Built-In Spindle Motor for High-Speed Machine Tools (공작기계용 고속 내장형 스핀들 모터의 열 해석)

  • Sim, Dae-Gon;Song, Seung-Hoon;Cho, Yoon-Hoo;Cho, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.71-77
    • /
    • 2000
  • The built-in spindle motor for high-speed machine tools is designed and developed by Corporate R&D Institute of DAEWOO Heavy Industries LTD. The heat analysis program for the built-in spindle motor is developed by using lumped method. For the purpose of verification of the program comparison analyses between experiments and calculations are performed on the three motors ; DHI prototype of built-in spindle motor built-in spindle motor sample A and sample B As results calculated temperature distributions are in good agreement with the test results within the average error of 10% Calculated results of all the built-in spindle motors show that maximum temperature rise at high speed remains in the operating condition without exceeding the permitted limit but they exceeded the permitted limit of temperature rise at low speed.

  • PDF

Analysis of Dynamic Characteristics of A High-speed Milling Spindle with a Drawbar and a Built-in Motor (고속 주축계에서 드로우바와 내장형 모터가 주축계의 동적 특성에 미치는 영향 분석)

  • Lim J.S.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1640-1643
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a drawbar and a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft and considering the mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of spindle. And considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

  • PDF

Thermal Characteristics Analysis of a High-Speed Motor-Separated Spindle System Using Oil-Jet Lubrication Method (오일-제트 윤활 방식의 모터 분리형 초고속 주축계의 열 특성 해석)

  • 김석일;김기태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • This paper presents the thermal characteristics analysis of a high-speed motor-separated spindle system consisted of angular contact ball bearings and built-in motor with oil-jet lubrication. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

An analysis of the thermal behaviour on the spindle system for machine tools (공작기계용 주축계에 관한 열적거동 해석)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.90-97
    • /
    • 1996
  • The thermal deformation of a machine tool spindle influences the performance of the manufacturing systems for precision products. In this research, thermal analysis of a high speed machine tool spindle with the rolling bearing and the built-in motor is carried out by using Finite Difference Method. The thermal boundary conditions describing the heat generation in the bearing and built-in motor are considered in the simulation. And various convective boundary conditions are assumed with the empirical formula in the references. From the simulation results, the characteristics of each element affecting the dynamic thermal behaviour of the machine tool spindle system have been clarified. Therefore, this model can be well applied to the future development of the high speed spindle systems.

  • PDF

A Study on the Thermal Characteristics of the Spindle System with Built-in Motor according to Spindle type (모터내장형 주축계의 구조에 따른 열특성 해석에 관한 연구)

  • 서창범;김수태;최대봉
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.105-110
    • /
    • 2001
  • Unsteady-state temperature distributions for spindle system with built-in motor according to spindle type are studied. For the analysis, three dimensional model is built considering heat transfer characteristics such as natural and forced convection coefficients. Temperature distributions are analyzed by using the finite element method. Results of analysis are compared.

  • PDF

A Study on the Oil-Jet Lubrication Characteristics of a Motor-Integrated High-Speed Spindle System with $\phi$65mm$\times$25,000rpm (오일제트윤활방식의 25,000rpm급 모터내장형 고속주축계의 윤활특성에 관한 연구)

  • 이용희;김석일;김태형;박보선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.59-64
    • /
    • 1998
  • In this study, a motor-integrated high-speed spindle system with $\psi$65mm $\times$ 25,000rpm is developed by introducing the oil-jet lubrication method, ceramic angular contact ball bearings, a built-in motor and so on. And oil-jet lubrication experiments fur evaluating the system performance are performed under various operation conditions. Especially, in order to establish the oillet lubrication conditions related to the development of a high-speed spindle system, the effects of oil supply rate and rotational spindle speed are investigated on the temperature rise, temperature distribution, motor current and so on.

  • PDF

An Analysis of the Thermal Deformation of the Main Spindle for Small and Precision Lathe (소형 정밀 선반용 주축의 열 변형 해석)

  • Jian, Jin;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Multi-function and miniaturization of the medical equipment and tele-communication systems need small and high precision machined parts. For the economic machining of the small size workpiece it should be machined by small and high precision machine tools with high speed machining. The belt type driving system in turning lathe has a limitation of spindle speeds because of the vibrations from driving mechanism, built-in type of driving mechanism is used to reduce the vibration. However, the main spindle of the built-in motor is connected directly to the motor, so the heat generation of the motor and bearing makes bad influence of the accuracy of machine tools. In this study, the analysis of heat generation from motor and bearings supporting main spindle and experiment were carried out. The results of theoretical simulation of temperature and deformation of the main spindle are good agreement with those of measured.

  • PDF

Temperature Distributions of High Precision Spindle with Built -in Motor (모터내장형 주축의 온도분포해석에 관한 연구)

  • 김용길;김수태;박천홍;김춘배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.624-628
    • /
    • 1996
  • Unsteady-state temperature distributions in the high precision spindle system with built-in motor are studied. For the analysis, three dimensional model is built for the high precision spindle. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficient. Temperature distributions are computed using the finite element method. Analysis results are compared with the measured data. Analysis shows that temperature distributions of high precision spindle system can be estimated resonably using the three dimensional model through the finite element method.

  • PDF

Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC (모터분리형 초고속 머시닝센터 주축계의 열특성 해석)

  • 김석일;권태균;나상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

Structural Characteristics Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (냉장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 구조 특성 해석)

  • 김석일;조재완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.326-333
    • /
    • 2004
  • This paper presents the structural characteristics analysis of a high-speed horizontal machining center with spindle speed of 50, 000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motor and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guide. The structural analysis model of the high-speed horizontal machining center is constructed by the finite element method, and the validity of structural design is estimated based on the structural deformation of the high-speed horizontal machining center and spindle nose caused by the gravity and inertia forces.

  • PDF