• Title/Summary/Keyword: Built-in motor

Search Result 260, Processing Time 0.026 seconds

Developing a Layout Based Simulation Model for Production Planning of Small Motor Production System (소형모터 생산시스템의 생산계획수립을 위한 설비배치 기반의 시뮬레이션 모형 구축)

  • 김승환
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.65-65
    • /
    • 1998
  • Manufacturing systems like a motor production process are analyzed using simulations than numerical analyses and/or heuristic methods due to their stochastic properties. The SME(small and medium enterprise) producing automotive motors that develop CIM systems to improve production performance is focused as an application site. We analyze and understand the system exactly using layout based simulation, and then we will suggest the initial feashible production-plan dependent on the layout to overcome weak-points of the current system(i.e., high WIPs, bottle-neck processes, due-date delays and etc.). And, solutions are suggested to increase performances of SMEs producing automotive motors in this paper. The simulation model built in this study is moedlled and analyzed with fully object-oriented methodology using SiMPLE++TM according to properties of production processes of the automotive motor. And, we will introduce ways to verify the model with developed templates for reusability when new needs will be occurred such as designing a new ship, extension or rearrangement of the system, change of production-plans, receiving urgent orders, and so on.

  • PDF

A Study on the Thermal Characteristics of a High Speed Spindle according to the Cooling Existence of Rear Part and the Cooling Conditions (고속주축의 냉각조건과 후반부 냉각 유무에 따른 열특성 연구)

  • Choi, Dae-Bong;Kim, Soo-Tae;Lee, Seog-Jun;Kim, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and bearing. This paper presents the thermal characteristic analysis for a high speed spindle with and without cooling at the rear part, considering the viscosity and the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil jacket cooling and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. This result can be applied to the design and manufacture of a high speed motor spindle.

Speed control system design using dual core DSP(TMS320F28377D) for the 2 Axis BLDC motor control (2축 BLDC 전동기 제어를 위한 듀얼코어 DSP(TMS320F28377D)를 이용하는 속도 제어 시스템 설계)

  • Lee, Dong-ju;Kim, Hee-chel;Lee, Dong-hyun;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.232-234
    • /
    • 2017
  • In this research, the BLDC motor 2 axis controller was designed using a dual core processor. The controller used TMS320F28377D which is TI's latest dual-core DSP, and the BLDC motor was selected with the position of resolver having high reliavility and the speed sensor built-in type motor.

  • PDF

Development of a Powered Knee Prosthesis using a DC Motor (DC 모터를 이용한 동력 의족 시스템 개발)

  • Kim, Won-Sik;Kim, Seuk-Yun;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.193-199
    • /
    • 2014
  • In this paper, we present an overview of the structure of a lab-built powered knee prosthesis and the control of it. We build a powered prosthesis prototype on the basis of previous researches and aim at obtaining the essential technology related with its control. We adopt the slider-crank mechanism with a DC motor as an actuator to manipulate the knee joint. We also build an embedded control system for the prosthesis with a 32-bit DSP controller as a main computation unit. We divide the gait phase into five stages and use a FSM (Finite State Machine) to generate a torque reference needed for each stage. We also propose to use a position-based impedance controller for driving the powered knee prosthesis stably. We perform some walking experiments at fixed speeds on a tread mill in order to show the feature of the built powered prosthesis. The experimental results show that our prosthesis has the ability to provide a functional gait that is representative of normal gait biomechanics.

오일제트윤활방식의 25,000rpm급 모터내장형 고속주축계의 진동특성에 관한 연구

  • 이용희;김석일;하재용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.846-851
    • /
    • 1995
  • A motor-integrated high-speed spindle system with .psi. 65*25, 000rpm is modeled for analytical and experimental studies related to the dynamic characteristics. And the systematic and rational identification processes for evaluating the material properties of spindle and built-in motor is introduced. The impulse excitation method is applied for the experimental model testing, and the dynamic characteristics of test model is theoretically analysed by using the finite element method based on Timoshenko theory. Especially, the experimental and theoetical results reveal that the test model under the required operational conditions has no critical problem for dynamic characteristics.

  • PDF

Design Characteristics of Permanent Magnet Linear Synchronous Motor for Short Reciprocating Trajectory

  • Jung, Sang-Yong
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.46-53
    • /
    • 2007
  • Design characteristics of PMLSM(Permanent Magnet Linear Synchronous Motor) considering the dynamic running condition under the limited input voltage and current for short reciprocating trajectory are presented. Particularly, the dynamic constraints resulted from the dynamic capability of PMLSM and the required motional performance of the repeated short stroke are applied to determine the design specification of PMLSM. In addition, optimal design flow based on the dynamic constraints is specified with the design parameters, such as coil resistances, the EMF constants, inductances, pole-pitch. Furthermore, proposed methods and results are validated by the experimental ones measured with the purpose-built prototype.

  • PDF

The development of the high speed & intellectual Line Center (초고속 Line Center의 구조설계에 관한 연구)

  • 송희남;유태봉;강경호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.479-482
    • /
    • 2000
  • To complite the high speed cutting system, It should be solved some problems, to make light the weight of mechanism for feedrate, develop the Linear motor that bas more power, high speed control system, and high speed cutting tools, nowadays, although many high speed cutting machine is to be built by some machine maker ,they have same problems, in this study, developed the system ball screw type before the feedrate mechanism for linear motor ,so we make the basic system for Line Cents . through that, it is limited to reduce the weight of frame and their frame is to be designed differently each other to reach the purpose special material or strucutre should be contrived.

  • PDF

High Speed Operation of Spindle Motor in the Field Weakening Region (약계자 영역에서의 스핀들 모터 고속운전)

  • Yu J-S;Park S-H;Yoon J-M;Shin S-C;Won C-Y;Choi C;Lee S-H
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.186-193
    • /
    • 2005
  • This paper presents a strategy to drive built in-type spindle induction motor which is used as CNC(Computer Numerical Control) in the industry. Gopinath model flux estimator which is composed of current model to be profitable in the low speed range and voltage model to be profitable in the high speed range is used for rotor flux estimation. Moreover this paper presents to drive the spindle motor in the high speed range by using the flux weakening control. High speed operation of spindle motor in the field weakening region is verified through simulations and experiments.

Automatic Tension Control of a Timber Carriage Used for Biomass Collection

  • Choi, Yun-Sung;Oh, Jae-Huen;Euh, Seung-Hee;Oh, Kwang-Cheor;Choi, Hee-Jin;Kim, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Purpose: A lab-scale timber carriage using a servo motor system was built. When two motors move a carriage, wire tension is changed according to the different line speeds caused by a wire drum's changing diameter, leading to inappropriate traveling characteristics of the carriage. In order to overcome this problem, PID Control was used to control the motor speed. Methods: Ziegler-Nichols method was used to determine PID gains. Results: The initial PID gains were 1.8, 0.025, and 0.006, respectively, and optimal gains of 1.4 and 0.010 for P and I gain were obtained experimentally. Conclusions: The results showed that constant wire tension could be maintained by controlling the speed of the motor using PI control. Overshoot occurred at initial motor operation due to vibration and elasticity of the wire itself.

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.