• Title/Summary/Keyword: Building-Used

Search Result 8,573, Processing Time 0.035 seconds

A Study on the Trend of Stone Industry and Residue (석재 산업 및 부산물 동향 조사)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Youn, Hojoong;Lim, Jong-Hwan
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Stone has been used for various purposes, such as for building stones, megaliths, ornamental stones, hunting and grinding throughout history. The global stone production amounted to around 153 million tons in 2018 excluding quarry waste, up 0.8% on year. Of them, stone residues accounted for 71%. The worldwide stone trading decreased 1.5 million tons to 56.5 million tons in 2018. The average price of stone was 34.1 USD per square meter, down 2.5% from the previous year. It's down 7% when only considering trading between the world's top twelve exporters. But in the three leading countries, Italy, Greece and Brazil, the price saw a sharp increase. In 2018, stone imports and exports totaled 815 million square meters, raising over 20 billion USD of revenue. Imports were largely led by six countries: China, Italy, Turkey, India, Brazil, Spain and Portugal, from largest to smallest.) In terms of stone use per 1,000 population, it was 117 square meters in 2001, and it increased to 264 square meters in 2017 and 266 square meters in 2018. The volume more than doubled during the period, but it has been declining slightly in recent years. China, India, Saudi Arabia and Belgium were the only countries that the stone use per 1,000 population exceeded 1,000 square meters. The increase rate was steepest in China, India and the United States, from largest to smallest. The global stone production is likely to grow to 69.85 million tons by 2025, despite the global economic downturn.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge (연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.49-71
    • /
    • 2021
  • Users who intend to utilize knowledge to actively solve given problems proceed their jobs with cross- and sequential exploration of associated knowledge related each other in terms of certain criteria, such as content relevance. A knowledge map is the diagram or taxonomy overviewing status of currently managed knowledge in a knowledge-base, and supports users' knowledge exploration based on certain relationships between knowledge. A knowledge map, therefore, must be expressed in a networked form by linking related knowledge based on certain types of relationships, and should be implemented by deploying proper technologies or tools specialized in defining and inferring them. To meet this end, this study suggests a methodology for developing the knowledge graph-based knowledge map using the Graph DB known to exhibit proper functionality in expressing and inferring relationships between entities and their relationships stored in a knowledge-base. Procedures of the proposed methodology are modeling graph data, creating nodes, properties, relationships, and composing knowledge networks by combining identified links between knowledge. Among various Graph DBs, the Neo4j is used in this study for its high credibility and applicability through wide and various application cases. To examine the validity of the proposed methodology, a knowledge graph-based knowledge map is implemented deploying the Graph DB, and a performance comparison test is performed, by applying previous research's data to check whether this study's knowledge map can yield the same level of performance as the previous one did. Previous research's case is concerned with building a process-based knowledge map using the ontology technology, which identifies links between related knowledge based on the sequences of tasks producing or being activated by knowledge. In other words, since a task not only is activated by knowledge as an input but also produces knowledge as an output, input and output knowledge are linked as a flow by the task. Also since a business process is composed of affiliated tasks to fulfill the purpose of the process, the knowledge networks within a business process can be concluded by the sequences of the tasks composing the process. Therefore, using the Neo4j, considered process, task, and knowledge as well as the relationships among them are defined as nodes and relationships so that knowledge links can be identified based on the sequences of tasks. The resultant knowledge network by aggregating identified knowledge links is the knowledge map equipping functionality as a knowledge graph, and therefore its performance needs to be tested whether it meets the level of previous research's validation results. The performance test examines two aspects, the correctness of knowledge links and the possibility of inferring new types of knowledge: the former is examined using 7 questions, and the latter is checked by extracting two new-typed knowledge. As a result, the knowledge map constructed through the proposed methodology has showed the same level of performance as the previous one, and processed knowledge definition as well as knowledge relationship inference in a more efficient manner. Furthermore, comparing to the previous research's ontology-based approach, this study's Graph DB-based approach has also showed more beneficial functionality in intensively managing only the knowledge of interest, dynamically defining knowledge and relationships by reflecting various meanings from situations to purposes, agilely inferring knowledge and relationships through Cypher-based query, and easily creating a new relationship by aggregating existing ones, etc. This study's artifacts can be applied to implement the user-friendly function of knowledge exploration reflecting user's cognitive process toward associated knowledge, and can further underpin the development of an intelligent knowledge-base expanding autonomously through the discovery of new knowledge and their relationships by inference. This study, moreover than these, has an instant effect on implementing the networked knowledge map essential to satisfying contemporary users eagerly excavating the way to find proper knowledge to use.

Topic Modeling Insomnia Social Media Corpus using BERTopic and Building Automatic Deep Learning Classification Model (BERTopic을 활용한 불면증 소셜 데이터 토픽 모델링 및 불면증 경향 문헌 딥러닝 자동분류 모델 구축)

  • Ko, Young Soo;Lee, Soobin;Cha, Minjung;Kim, Seongdeok;Lee, Juhee;Han, Ji Yeong;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.2
    • /
    • pp.111-129
    • /
    • 2022
  • Insomnia is a chronic disease in modern society, with the number of new patients increasing by more than 20% in the last 5 years. Insomnia is a serious disease that requires diagnosis and treatment because the individual and social problems that occur when there is a lack of sleep are serious and the triggers of insomnia are complex. This study collected 5,699 data from 'insomnia', a community on 'Reddit', a social media that freely expresses opinions. Based on the International Classification of Sleep Disorders ICSD-3 standard and the guidelines with the help of experts, the insomnia corpus was constructed by tagging them as insomnia tendency documents and non-insomnia tendency documents. Five deep learning language models (BERT, RoBERTa, ALBERT, ELECTRA, XLNet) were trained using the constructed insomnia corpus as training data. As a result of performance evaluation, RoBERTa showed the highest performance with an accuracy of 81.33%. In order to in-depth analysis of insomnia social data, topic modeling was performed using the newly emerged BERTopic method by supplementing the weaknesses of LDA, which is widely used in the past. As a result of the analysis, 8 subject groups ('Negative emotions', 'Advice and help and gratitude', 'Insomnia-related diseases', 'Sleeping pills', 'Exercise and eating habits', 'Physical characteristics', 'Activity characteristics', 'Environmental characteristics') could be confirmed. Users expressed negative emotions and sought help and advice from the Reddit insomnia community. In addition, they mentioned diseases related to insomnia, shared discourse on the use of sleeping pills, and expressed interest in exercise and eating habits. As insomnia-related characteristics, we found physical characteristics such as breathing, pregnancy, and heart, active characteristics such as zombies, hypnic jerk, and groggy, and environmental characteristics such as sunlight, blankets, temperature, and naps.

The analysis for attributes of OUV of the capital of Shilla Kingdom (세계유산 신라왕경의 탁월한 보편적 가치 속성 분석)

  • KIM, Euiyeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.151-174
    • /
    • 2022
  • According to the "Special Act on the Restoration and Maintenance of the Core Relics of the Shilla Kingdom" enacted in 2019, the Shilla Kingdom refers to the capital of Shilla and Unified Shilla period, and refers to Gyeongju, where the king lived, and the nearby area. Shilla Wanggyeong is a heritage registered on the UNESCO World Heritage List in 2000 under the name of Gyeongju Historic Site and belongs to Wolseong District, Hwangnyongsa District, and Daeneungwon District among the five districts registered as Gyeongju Historic Site. Unlike the Namsan and Sanseong districts, the Shilla Kingdom is a heritage consisting mostly of archaeological sites without physical substance. Gyeongju City sought to promote local tourism while providing more direct experiences to visitors by restoring the heritage that constitutes the Shilla Kingdom. Starting with the restoration of Woljeonggyo Bridge in 2005, the Shilla Wanggyeong restoration project began in earnest. Gyeongju City tried to restore the building site on the west side of Donggung Palace and Wolji after Woljeonggyo Bridge, but it was canceled due to opposition from the UNESCO World Heritage Committee. The World Heritage Committee opposed the restoration and recommended a heritage impact assessment for similar projects in the future. During the miscarriage impact assessment procedure, there is an OUV attribute analysis process of the heritage to be evaluated. This study intends to preemptively derive OUV attributes for the Silla Kingdom through literature and overseas case analysis. In the case of literature research, domestic and foreign research data related to the UNESCO World Heritage Convention and World Heritage Management were examined, and in overseas cases, the architectural works of Krakow Historical District, Stonehenge and Abbury Geoseok Ruins in England, and Le Corbusier were analyzed. Through this, the outstanding universal value attributes of the Silla Kingdom were derived. This study is expected to be used as a reference in the process of restoration projects of other heritage constituting the Shilla Kingdom or construction plans in nearby areas in the future and serve as an indicator to improve the management system of the Shilla Kingdom more efficiently from the perspective of world heritage.

Simplified Method for Estimation of Mean Residual Life of Rubble-mound Breakwaters (경사제의 평균 잔류수명 추정을 위한 간편법)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • A simplified model using the lifetime distribution has been presented to estimate the Mean Residual Life (MRL) of rubble-mound breakwaters, which is not like a stochastic process model based on time-dependent history data to the cumulative damage progress of rubble-mound breakwaters. The parameters involved in the lifetime distribution can be easily estimated by using the upper and lower limits of lifetime and their likelihood that made a judgement by several experts taking account of the initial design lifetime, the past sequences of loads, and others. The simplified model presented in this paper has been applied to the rubble-mound breakwater with TTP armor layer. Wiener Process (WP)-based stochastic model also has been applied together with Monte-Carlo Simulation (MCS) technique to the breakwater of the same condition having time-dependent cumulative damage to TTP armor layer. From the comparison of lifetime distribution obtained from each models including Mean Time To Failure (MTTF), it has found that the lifetime distributions of rubble-mound breakwater can be very satisfactorily fitted by log-normal distribution for all types of cumulative damage progresses, such as exponential, linear, and logarithmic deterioration which are feasible in the real situations. Finally, the MRL of rubble-mound breakwaters estimated by the simplified model presented in this paper have been compared with those by WP stochastic process. It can be shown that results of the presented simplified model have been identical with those of WP stochastic process until any ages in the range of MTT F regardless of the deterioration types. However, a little of differences have been seen at the ages in the neighborhood of MTTF, specially, for the linear and logarithmic deterioration of cumulative damages. For the accurate estimation of MRL of harbor structures, it may be desirable that the stochastic processes should be used to consider properly time-dependent uncertainties of damage deterioration. Nevertheless, the simplified model presented in this paper can be useful in the building of the MRL-based preventive maintenance planning for several kinds of harbor structures, because of which is not needed time-dependent history data about the damage deterioration of structures as mentioned above.

Analysis of Fire Occurrence Characteristics According to Ignition Heat Sources (발화열원에 따른 화재발생 특성 분석)

  • Lee, Kyung-Su;Kim, Tae-Hyeung;Lee, Jae-Ou
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.280-289
    • /
    • 2022
  • Purpose: In this study, the characteristics of fire occurrence according to ignition heat sources such as operating equipment, cigarette/lighter fire, and flame/fire were analyzed. Method: One-way ANOVA and cross-analysis were used to analyze the characteristics of fire occurrence by verifying the difference between the ignition environment, fire damage status and scale, and cause of ignition according to the ignition heat source. Result: The fire occurrence characteristics were analyzed through As a result of the analysis, it was found that fires caused by operating devices occurred more frequently on weekdays than other ignition heat sources, and the number of victims and the number of victims were the highest, so mobilization of firefighting power and property damage were the greatest. The initial ignition was generated by electric and electronic devices, and the combustion was expanded by the synthetic resin. For fires caused by cigarette and lighter fires, the most fires occurred on Saturdays and Sundays, and the mobilization of the police force was more characteristic than the mobilization of the firefighting force. In particular, it was found that the initial ignition and combustion expansion were caused by paper, wood, and hay. Fires caused by sparks and sparks occurred most frequently on Saturdays and Sundays, and initial ignition and combustion expansion were found to be caused by paper, wood, and hay. In particular, it showed the characteristic that it occurred in the place farthest from the fire station. The common characteristic of all ignition heat sources was that the fire occurred most frequently in the afternoon time, and the fire type was predominantly the building structure fire, and only the ignition point was burned the most. Conclusion: In order to prevent fire and minimize damage, it is necessary to analyze the tendency of fire occurrence and to prepare appropriate preparations according to the fire occurrence factors. In order to analyze the characteristics of fire occurrence using public data in the future, it is necessary to standardize disaster data and to open and activate data.

A Study on Precision of 3D Spatial Model of a Highly Dense Urban Area based on Drone Images (드론영상 기반 고밀 도심지의 3차원 공간모형의 정밀도에 관한 연구)

  • Choi, Yeon Woo;Yoon, Hye Won;Choo, Mi Jin;Yoon, Dong Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • The 3D spatial model is an analysis framework for solving urban problems and is used in various fields such as urban planning, environment, land and housing management, and disaster simulation. The utilization of drones that can capture 3D images in a short time at a low cost is increasing for the construction of 3D spatial model. In terms of building a virtual city and utilizing simulation modules, high location accuracy of aerial survey and precision of 3D spatial model function as important factors, so a method to increase the accuracy has been proposed. This study analyzed location accuracy of aerial survey and precision of 3D spatial model by each condition of aerial survey for urban areas where buildings are densely located. We selected Daerim 2-dong, Yeongdeungpo-gu, Seoul as a target area and applied shooting angle, shooting altitude, and overlap rate as conditions for the aerial survey. In this study, we calculated the location accuracy of aerial survey by analyzing the difference between an actual survey value of CPs and a predicted value of 3D spatial Model. Also, We calculated the precision of 3D spatial Model by analyzing the difference between the position of Point cloud and the 3D spatial Model (3D Mesh). As a result of this study, the location accuracy tended to be high at a relatively high rate of overlap, but the higher the rate of overlap, the lower the precision of 3D spatial model and the higher the shooting angle, the higher precision. Also, there was no significant relationship with precision. In terms of baseline-height ratio, the precision tended to be improved as the baseline-height ratio increased.

Estimation of spatial distribution of snow depth using DInSAR of Sentinel-1 SAR satellite images (Sentinel-1 SAR 위성영상의 위상차분간섭기법(DInSAR)을 이용한 적설심의 공간분포 추정)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1125-1135
    • /
    • 2022
  • Damages by heavy snow does not occur very often, but when it does, it causes damage to a wide area. To mitigate snow damage, it is necessary to know, in advance, the depth of snow that causes damage in each region. However, snow depths are measured at observatory locations, and it is difficult to understand the spatial distribution of snow depth that causes damage in a region. To understand the spatial distribution of snow depth, the point measurements are interpolated. However, estimating spatial distribution of snow depth is not easy when the number of measured snow depth is small and topographical characteristics such as altitude are not similar. To overcome this limit, satellite images such as Synthetic Aperture Radar (SAR) can be analyzed using Differential Interferometric SAR (DInSAR) method. DInSAR uses two different SAR images measured at two different times, and is generally used to track minor changes in topography. In this study, the spatial distribution of snow depth was estimated by DInSAR analysis using dual polarimetric IW mode C-band SAR data of Sentinel-1B satellite operated by the European Space Agency (ESA). In addition, snow depth was estimated using geostationary satellite Chollian-2 (GK-2A) to compare with the snow depth from DInSAR method. As a result, the accuracy of snow cover estimation in terms with grids was about 0.92% for DInSAR and about 0.71% for GK-2A, indicating high applicability of DInSAR method. Although there were cases of overestimation of the snow depth, sufficient information was provided for estimating the spatial distribution of the snow depth. And this will be helpful in understanding regional damage-causing snow depth.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.