• Title/Summary/Keyword: Building wind

Search Result 1,149, Processing Time 0.026 seconds

Wind effects on a large cantilevered flat roof: loading characteristics and strategy of reduction

  • Fu, J.Y.;Li, Q.S.;Xie, Z.N.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.357-372
    • /
    • 2005
  • Mean and extreme pressure distributions on a large cantilevered flat roof model are measured in a boundary layer wind tunnel. The largest peak suction values are observed from pressure taps beneath conical "delta-wing type" corner vortices that occur for oblique winds, then the characteristics and causes of the local peak suctions are discussed in detail. Power spectra of fluctuating wind pressures measured from some typical taps located at the roof edges under different wind directions are presented, and coherence functions of fluctuating pressures are also obtained. Based on these results, it is verified that the peak suctions are highly correlated with the conical vortices. Furthermore, according to the characteristics of wind loads on the roof, an aerodynamic solution to minimize the peak suctions by venting the leading edges and the corners of the roof is recommended. The experimental results show that the suggested strategy can effectively control the generation of the conical vortices and make a reduction of 50% in mean pressures and 25% in extreme local pressures at wind sensitive locations on the roof.

Spatial extrapolation of pressure time series on low buildings using proper orthogonal decomposition

  • Chen, Yingzhao;Kopp, Gregory A.;Surry, David
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.373-392
    • /
    • 2004
  • This paper presents a methodology for spatial extrapolation of wind-induced pressure time series from a corner bay to roof locations on a low building away from the corner through the application of proper orthogonal decomposition (POD). The approach is based on the concept that pressure time series in the far field can be approximated as a linear combination of a series of modes and principal coordinates, where the modes are extracted from the full roof pressure field of an aerodynamically similar building and the principal coordinates are calculated from data at the leading corner bay only. The reliability of the extrapolation for uplift time series in nine bays for a cornering wind direction was examined. It is shown that POD can extrapolate reasonably accurately to bays near the leading corner, given the first three modes, but the extrapolation degrades further from the corner bay as the spatial correlations decrease.

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Combination coefficient of ESWLs of a high-rise building with an elliptical cross-section

  • Wang, Qinhua;Yu, Shuzhi;Ku, Chiujen;Garg, Ankit
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.523-532
    • /
    • 2020
  • As the height and flexibility of high-rise buildings increase, the wind loads become more dominant and the combination coefficient of Equivalent Static Wind Loads (ESWLs) should be considered when they are used in the structural design. In the first phase of the study, a brief introduction to the theory on the combination coefficient for high-rise buildings was given and then the time history of wind-induced responses of a 208-meter high-rise building with an elliptical cross-section was presented based on the wind tunnel test results for pressure measurement. The correlation between wind-induced responses was analyzed and the combination coefficients of ESWLs of the high-rise buildings using Turkstra's rule, and Asami's method, were calculated and compared with related design codes, e.g., AIJ-RLB, ASCE 7-10, and China Load Code for structural design. The results of the study showed that the combination coefficients from Asami's method are conservative compared with the other three methods. The results of this paper would be helpful to the wind-resistant design of high-rise buildings with elliptical cross-section.

Design Method to Control Wind-Induced Vibration of High-Rise Buildings Using Resizing Algorithm (재분배기법을 이용한 고층건물의 풍응답 가속도 조절 설계기법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.465-473
    • /
    • 2010
  • As increase of height and slenderness of buildings, serviceability design criteria such as maximum lateral drift and wind-induced vibration level play an important role in structural design of high-rise buildings. Especially, wind-induced vibration is directly related to discomfort of occupants. However, no practical algorithm or design method is available for structural designers to control the acceleration level due to wind. This paper presented a control method for wind-induced vibration of high-rise buildings using the resizing algorithm. The level of vibration due to wind is calculated by well known estimation rules of ASCE 7-02, NBCC 95, SAA83, and Solari method. Based on the fact that the level of wind-induced vibration is inversely proportional to the magnitude of natural periods of buildings, in the design method, natural periods of a high-rise building are modified by redistribution of structural weight according to the resizing algorithm. The design method is applied to wind-induced vibration control design of real 42-story residential building and evaluated the efficiency and effectiveness.

A Basic Study on Application of Small Wind Power System Combined Ventilator in Super High-rise Apartment (1) (초고층 공동주택의 배기겸용 소형풍력발전 적용을 위한 기초연구(1))

  • Park, Jung-Ha;Kim, Jin-Woo;Jang, Ho-Jin;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.126-132
    • /
    • 2011
  • Recently, high-rise apartment is being briskly built but there are problems such as lack of ventilation, stack effect and much energy consumption. Therefore It is recommended to develop a Small Wind Power System Combined Ventilator as a solution to solve these problems. The purpose of this study is to provide basis for Small Wind Power System Combined Ventilator in super high-rise apartment. This study conducted CFD simulation (Star-CCM) according to the shape of structures, building height and distance of two structures to identify the effect of wind speed increase when the structure is installed. As a result, pyramidal type was best suited for increase of wind speed. The best place was the front of the roof to main wind direction, and the best building height was 200m rather than 300m. If two or more small wind turbines combined ventilator are installed closely, vertical position to main wind direction is recommended. Horizontal position must necessarily be avoided, but height difference between two blades more than 3m showed good performance.

Numerical simulation on fluid-structure interaction of wind around super-tall building at high reynolds number conditions

  • Huang, Shenghong;Li, Rong;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.197-212
    • /
    • 2013
  • With more and more high-rise building being constructed in recent decades, bluff body flow with high Reynolds number and large scale dimensions has become an important topic in theoretical researches and engineering applications. In view of mechanics, the key problems in such flow are high Reynolds number turbulence and fluid-solid interaction. Aiming at such problems, a parallel fluid-structure interaction method based on socket parallel architecture was established and combined with the methods and models of large eddy simulation developed by authors recently. The new method is validated by the full two-way FSI simulations of 1:375 CAARC building model with Re = 70000 and a full scale Taipei101 high-rise building with Re = 1e8, The results obtained show that the proposed method and models is potential to perform high-Reynolds number LES and high-efficiency two-way coupling between detailed fluid dynamics computing and solid structure dynamics computing so that the detailed wind induced responses for high-rise buildings can be resolved practically.

Analysis of the Condenser Stack Effect in a High-Rise Apartment Building (고층 아파트에서 응축기 적층문제 분석)

  • 최석호;이관수;김인규;이동혁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.796-803
    • /
    • 2004
  • The stack effect of a new type condenser installed in a high-rise apartment building was studied numerically A sirocco fan is introduced to the new type condenser instead of an axial flow In. The new type condenser intakes the cold air through the lower inlet and exhausts the hot air through the upper outlet. The effects of the building height and frontal wind on the performance of an air-conditioner were analyzed. The performance of an air-conditioner was evaluated by using COP (coefficient of performance) and CGPI (condenser group performance indicator). the hot air was exhausted by the new type condenser at an angle of 50$^{\circ}$ from the outer wall of the building. If there was no draft, the new type condenser installed in the high-rise apartment building had a good performance and its performance on each floor is not influenced by the stack effect. It is shown that the efficiency of the air-conditioner installed in several floors below the top floor decreased when the frontal wind velocity was greater than 8 m/s.

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

A PRELIMINARY STUDY OF EFFECT OF THE GREEN FEATURE - WING WALLS ON NATURAL VENTILATION IN BUILDINGS

  • Cheuk Ming Mak;Jian Lei Niu;Kai Fat Chan
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.814-819
    • /
    • 2005
  • There is growing consciousness of the environmental performance of buildings in Hong Kong. The Buildings Department, the Lands Department and the Planning Department of the Hong Kong Government issued the first of a series of joint practice notes [1] to promote the construction of green and innovative buildings. Green features are architectural features used to mitigate migration of noise and various air-borne pollutants and to moderate the transport of heat, air and transmission of daylight from outside to indoor environment in an advantageous way. This joint practice note sets out the incentives to encourage the industry in Hong Kong to incorporate the use of green features in building development. The use of green features in building design not only improves the environmental quality, but also reduces the consumption of non-renewable energy used in active control of indoor environment. Larger window openings in the walls of a building may provide better natural ventilation. However, it also increases the penetration of direct solar radiation into indoor environment. The use of wing wall, one of the green features, is an alternative to create effective natural ventilation. This paper therefore presents a preliminary numerical study of its ventilation performance using Computational Fluid Dynamics (CFD). The numerical results will be compared with the results of the wind tunnel experiments of Givoni.

  • PDF