• 제목/요약/키워드: Building wind

검색결과 1,148건 처리시간 0.025초

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.

타공 패널의 다공률에 따른 에너지 하베스팅에 관한 연구 (A Study on the Energy Harvesting according to the porosity of Perforated Panel)

  • 박하준;이민협;유무영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.113-114
    • /
    • 2023
  • As the available resources are gradually depleted, interest in renewable energy is increasing. Various energy harvesting technologies are emerging, and energy harvesting using solar, solar, and wind power is used in the highest range. Depending on the abnormal climate, solar heat and solar power differ in energy harvest, but the wind is fixed compared to the sun. Therefore, it was intended to maximize the effect of energy harvesting by using the venturi effect, which has a change in wind speed according to the turbine used for wind power generation and wind pressure. Therefore, in this paper, we want to see the difference in the amount of power generated by the turbine after increasing the wind speed using the venturi effect.

  • PDF

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Practical estimation of veering effects on high-rise structures: a database-assisted design approach

  • Yeo, DongHun
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.355-367
    • /
    • 2012
  • Atmospheric boundary layer winds experience two types of effects due to friction at the ground surface. One effect is the increase of the wind speeds with height above the surface. The second effect, called the Ekman layer effect, entails veering - the change of the wind speed direction as a function of height above the surface. In this study a practical procedure is developed within a database-assisted design (DAD) framework that accounts approximately for veering effects on tall building design. The procedure was applied in a case study of a 60-story reinforced concrete building, which also considered the dependence of veering effects on the orientation of the building. Comparisons are presented between response estimates that do not account for veering, and account for veering conservatively. For the case studied in this paper veering effects were found to be small.

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

풍력자원평가용 윈드큐브 라이다와 씬텍 소다의 비교.검증 - 잠실 원격탐사 캠페인 (Comparative Validation of WindCube LIDAR and Scintec SODAR for Wind Resource Assessment - Remote Sensing Campaign at Jamsil)

  • 김현구;김동혁;전완호;최현정
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.43-50
    • /
    • 2011
  • The only practical way to measure wind resource at high-altitude over 100 m above ground for a feasibility study on a high-rise building integrated wind turbine might be ground-based remote sensing. The remote-sensing campaign was performed at a 145 m-building roof in Jamsil where is a center of metropolitan city Seoul. The campaign aimed uncertainty assessment of Leosphere WindCube LIDAR and Scintec MPAS SODAR through a mutual comparison. Compared with LIDAR, the data availability of SODAR was about 2/3 at 550 m altitude while both showed over 90% under 400 m, and it is shown that the data availability decrease may bring a distortion of statistical analysis. The wind speed measurement of SODAR was fitted to a slope of 0.92 and $R^2$ of 0.90 to the LIDAR measurement. The relative standard deviation of wind speed difference and standard deviation of wind direction difference were evaluated to be 30% and 20 degrees, respectively over the whole measurement heights.

Probability density evolution analysis on dynamic response and reliability estimation of wind-excited transmission towers

  • Zhang, Lin-Lin;Li, Jie
    • Wind and Structures
    • /
    • 제10권1호
    • /
    • pp.45-60
    • /
    • 2007
  • Transmission tower is a vital component in electrical system. In order to accurately compute the dynamic response and reliability of transmission tower under the excitation of wind loading, a new method termed as probability density evolution method (PDEM) is introduced in the paper. The PDEM had been proved to be of high accuracy and efficiency in most kinds of stochastic structural analysis. Consequently, it is very hopeful for the above needs to apply the PDEM in dynamic response of wind-excited transmission towers. Meanwhile, this paper explores the wind stochastic field from stochastic Fourier spectrum. Based on this new viewpoint, the basic random parameters of the wind stochastic field, the roughness length $z_0$ and the mean wind velocity at 10 m heigh $U_{10}$, as well as their probability density functions, are investigated. A latticed steel transmission tower subject to wind loading is studied in detail. It is shown that not only the statistic quantities of the dynamic response, but also the instantaneous PDF of the response and the time varying reliability can be worked out by the proposed method. The results demonstrate that the PDEM is feasible and efficient in the dynamic response and reliability analysis of wind-excited transmission towers.

A low-cost expandable multi-channel pressure system for wind tunnels

  • Moustafa, Aboutabikh;Ahmed, Elshaer;Haitham, Aboshosha
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.297-307
    • /
    • 2022
  • Over the past few decades, the use of wind tunnels has been increasing as a result of the rapid growth of cities and the urge to build taller and non-typical structures. While the accuracy of a wind tunnel study on a tall building requires several aspects, the precise extraction of wind pressure plays a significant role in a successful pressure test. In this research study, a low-cost expandable synchronous multi-pressure sensing system (SMPSS) was developed and validated at Ryerson University's wind tunnel (RU-WT) using electronically scanning pressure sensors for wind tunnel tests. The pressure system consists of an expandable 128 pressure sensors connected to a compact data acquisition and a host workstation. The developed system was examined and validated to be used for tall buildings by comparing mean, root mean square (RMS), and power spectral density (PSD) for the base moments coefficients with the available data from the literature. In addition, the system was examined for evaluating the mean and RMS pressure distribution on a standard low-rise building and were found to be in good agreement with the validation data.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Large eddy simulation of flow over a wooded building complex

  • Rehm, R.G.;McGrattan, K.B.;Baum, H.R.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.291-300
    • /
    • 2002
  • An efficient large eddy simulation algorithm is used to compute surface pressure distributions on an eleven story (target) building on the NIST campus. Local meteorology, neighboring buildings, topography and large vegetation (trees) all play an important part in determining the flows and therefore the pressures experienced by the target. The wind profile imposed at the upstream surface of the computational domain follows a power law with an exponent representing a suburban terrain. This profile accounts for the flow retardation due to friction from the surface of the earth, but does not include fluctuations that would naturally occur in this flow. The effect of neighboring buildings on the time dependent surface pressures experienced by the target is examined. Comparison of the pressure fluctuations on the single target building alone with those on the target building in situ show that, owing to vortices shed by the upstream buildings, fluctuations are larger when such buildings are present. Even when buildings are lateral to or behind the target, the pressure disturbances generate significantly different flows around this building. A simple grid-free mathematical model of a tree is presented in which the trunk and the branches are each represented by a collection of spherical particles strung together like beads on a string. The drag from the tree, determined as the sum of the drags of the component particles, produces an oscillatory, spreading wake of slower fluid, suggesting that the behavior of trees as wind breakers can be modeled usefully.