• Title/Summary/Keyword: Building thermal performance

Search Result 635, Processing Time 0.028 seconds

Evaluation on Total Energy Consumption of Low-Energy House with Structural Insulated Panels (구조단열패널 적용 저에너지주택의 총에너지사용량 평가)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Jo, Hye-Jin;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • This project is mainly related to evaluation of total energy consumption of low energy house, the exterior envelope of which was wholly composed of structural insulated panels(SIP). The U-value of applied SIP was in the range of 0.189 to $0.269W/m^2{\cdot}K$ and the U-value of pair glass from 0.78 to $1.298W/m^2{\cdot}K$ was applied for window dependent to its function respectively. For comparison of total energy performance, the energy simulation for pilot house was performed to compare with the control house having insulation criteria of Korean building regulation in 2009. Based on simulation of dynamic energy performance, the pilot house saved 48.3% of annual energy consumption while the control house in 2009 consumed as 85.7GJ/y. In case of heating, the result showed that the energy saving ratio amounted to 76.7%. For $CO_2$ emission, the pilot house diminished approximately 35.4% from $6,208.4kgCO_2$ to $4,009.2kgCO_2$. In payback period to early investment, it was analyzed the pilot house took 7.8 years, when the low energy house built by other insulation method with same thermal perfusion took 11.5 years. From this result, it is considered that the SIP is more effective, economic to Green Home application.

Development of Impact Table and optimum combination dedication module for green-remodeling advance business value assessment

  • Choi, Jun-Woo;Kim, Gyoung-Rok;Ko, Jung-Lim;Shin, Jee-Woong;Lee, Keon-Ho
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: In case of existing building, A lot of attempts are being made like changing thermal system or using high efficiency products to decrease energy load and increase energy efficiency. However, (1) Absence of systemed database of green-remodeling technology and products. (2) Absence of comparative analysis system and qualitative/quantitative evaluation method of energy performance and energy reduction cost. (3) Existing remodeling was very hard to access for non-experts. So, in this paper, the authors developed data base for green-remodeling(Impact Table A, Impact Table B) and optimum combination dedication tool for user convenience. Accordingly, purpose of this paper validate usefulness of Impact Table and optimum alternative dedication tool. Method: For validate the usefulness of Impact Table and optimum combination dedication tool, the authors selected five test model office buildings. Next, through research investigation, the authors diagnosed the present state of buildings. In base of diagnosis results, select technologies for remodeling by qualitative comparison (Impact Table A). Next, evaluate quantitative price and performance technologies that selected in Impact Table A (Impact Table B). Lastly, through final evaluation of Impact Taba A and Impact Table B, determine the direction of the green-remodeling. Result: Impact Table and optimum combination dedication tool can use relative indicator for green-remodeling, especially through ROI by detail field.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel (SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징)

  • Lee, Chin Hyunng;Chang, Kyong Ho;Park, Hyun Chan;Lee, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.395-403
    • /
    • 2006
  • Recently constructed bridges often have long spans and simple structure details considering not only the function but other important factors such as aesthetics, maintenance, construction duration and life cycle cost. Therefore, bridges require high-performance steels like extra-thick plate steels and thermo-mechanical control process (TMCP) steels. TMCP stels are now gaining wide attention due to their weldability improved strength and toughness. Recently, SM570-TMC steel, which is a high-strength TMCP steel with a tensile strength of 600 MPa, has been developed and applied to steel structures. However, using this steel in building steel structures requires the elucidation of not only material characteristics but also the mechanical characteristic of welded joints. In this study, high-temperature tensile properties of SM570-TMC steel were investigated through the elevated temperature welded joints of SM570-TMC steel were studied through the three-dimensional thermal elasticplastic analyses on the basis of mechanical properties at high temperatures obtained from the experiment.

A Study on Pattern Recognition to Compute Guidelines Based on Evidence for Ecological Healing Environment at Agha Khan Hospital in Karachi - Focused on Human Thermal Comfort Model (HTCM), for Karachi, using Climate Consultant Program

  • Shaikh, Javaria Manzoor;Park, Jae Seung
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.27-35
    • /
    • 2015
  • Purpose: Healthcare is on the whole a personal and critical service that consumer's use, whereas hospitalization is as a rule painful, because nature nurtures and Sun Light Luminosity for healthcare settings is considered healing. The performance and design of climate responsive buildings such as AKU requires a detailed study of attributes of climate both at micro as well as macro level. The therapeutic value of contact with nature through window view, greenery and landscape is calculated there. Method: A two prong strategy is been devised for this article, at micro level three typical morphologies are analysed by creating same environment of neighboring building on sun shading chart, radiation and temperature range. Since the analysis of local climate helps to determine the design strategies for hospital Healing Environment which is suitable for Karachi climate; in order to track the macro climatic behaviour, a considerable analysis of psychometrics chart for AKU Karachi are designed on Climate Consultant (CC) and analysed by Machine Learning. Climate Consultant proposes different design strategies suitable for Karachi. And on the other hand time wise illumination sources for clinical area which are then measured on psychrometric chart- according to singular space: multi patient admission, secondly: acute ambulatory ward, and tertiary: multi windowed space according to the mushrabiyah and sky light pattern. Result: Our findings support the hypothesis that windowed wall is 75-80% more healing wall; an accelerated evidence was found for healing at macro level if the form of the hospital is designed according to the climatologically preferences, whereas at micro level: the light resource becomes the staff attentiveness determinant. In Conclusion evidence was provided that the actual form of luminosity results consequently in satisfaction while light entering from several set of windows and other sources might be valued if design according to the healing environment. The data added on the sun shading chart to calculate rays entraining into space in patient room equal to 124416.21 Watts/ meter $m^2$ is calculated as precise healing rate-and is confirmed by questionnaire from patients belonging from each clinical stage having different illnesses.

Preparation and Characterization of Fire-Resistant Silicone Polymer Composites Containing Inorganic Flame Retardants (무기계 난연제를 첨가한 실리콘 고분자 내화재료의 제조 및 특성분석)

  • Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • The fire resistive materials are used to resist from fire accidents in the building. In this study silicone rubber/inorganic flame retardant composites were prepared by mechanical stirring method, using aluminium trihydroxide(ATH, $Al(OH)_3$) and magnesium dihydroxide(MDH, $Mg(OH)_2$) as synergistic fire-resistant additives. The thermal properties of the fire resistant composites were characterized by thermogravimetric analysis(TGA). In addition, rheological properties were observed by rheometer and fire-resistant properties were tested by gas torch. Through this study, we realized that the silicone rubber containing ATH, MDH increased the performance of fire-resistance.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

Hygroscopic Properties of Light-Frame Wall with Different Assemblies

  • Kim, Se-Jong;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2006
  • On purpose to reduce accumulated moisture and to prevent moisture condensation in a light-frame wall, thermal characteristics and moisture behaviors were investigated for four different wall assemblies; a) typical wall, b) addition of vapor retarder between the insulation and the gypsum board, c) addition of air gap for natural ventilation behind the siding, d) composition with b) and c). Each wall was tested under two climate conditions; 1) $20^{\circ}C$, 50% RH (indoor) and $30^{\circ}C$, 85% RH (outdoor), 2) $30^{\circ}C$, 85% RH (indoor) and $20^{\circ}C$, 50% RH (outdoor).The results showed that the typical wall assembly had poor resistance against moisture intrusion from the inside of building. Outdoor and indoor humidity caused the moisture condensations on the inside of the siding and the back surface of the sheathing respectively. The addition of a vapor retarder did not give significant improvement in preventing the moisture intrusion.

The Performance Assessment Study of Solar Energy Cogeneration panel for Building Integrated System (건물통합을 위한 태양에너지 cogeneration panel 특성 분석 연구)

  • Kim, Yong-Hwan;Kang, Eun-Chul;Hyun, Myung-Taek;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.35-42
    • /
    • 2006
  • Solar Thermal-Electric Integrated system can be used to generate heat and electricity simultaneously and can improve indoor all qualify. So, it can save heating and electricity cost as it operates at relatively lower temperatures. In this study, one pv module was fixed on a normal wall and a pv module was mounted on a solarwall. And a ventilation fan in the solar energy cogeneration panel was operated from 12:00 to 17:00 hours. Experimental results are recorded and anaysized. The comparison of results show that the temperature of PV on solar energy cogeneration panel was decreased by $7{\sim}9^{\circ}C$ and the electrical output was improved by $2{\sim}3W$ compared with a PV system without solarwall.

A Study on the Design Prototype Development of Underfloor Air-Conditioning System(UFAC) for Improving Indoor Environment (바닥급기 공조시스템(UFAC)을 적용한 작업공간의 실내환경 평가기법 개발연구)

  • 정광섭;한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.325-336
    • /
    • 2000
  • During the last decade, an increasing interest in Underfloor Air-Conditioning(UFAC) systems has emerged. The purpose of this paper is to evaluate comprehensively the indoor environmental performance of office buildings with UFAC system in order to develope the design prototype of this system. In this paper, the physical measurements and the interviewing survey of occupant's sensation responses to the environment were carried out. Measurements and survey were made of the thermal environmental factors such as air temperature, relative humidity, air velocity, globe temperature, and the other several environmental factors such as the sound level and the illuminance of working plane, etc. And, the air quality was evaluated by measuring the concentration of suspended particles, carbon monoxide, and carbon dioxide in the room. Furthermore, the paper appraises the various indoor environmental factors of the room by using post-occupancy evaluation(POE) method in office building with UFAC system, and thus, it suggests the basic data for assessing the indoor comfort based on field measurements and survey.

  • PDF