• Title/Summary/Keyword: Building thermal performance

Search Result 634, Processing Time 0.036 seconds

Evaluation of Condensation Resistance of Steel Stud Wall Corner Details in Modular Buildings (스틸 스터드 모듈러 건축물 접합부위의 결로방지성능 개선방안 평가)

  • Oh, Ji Hyun;Yang, Si Won;Cho, Bong Ho;Kim, Sun Sook
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2014
  • Modular systems are widely used in various building types including housing, dormitory, and barracks. Steel studs have many advantages over other materials as construction components of modular buildings in terms of seismic performance, durability and maintenance. However, steel stud modular systems also have weakness in condensation resistance due to high thermal conductivity of steel. The purpose of this study is to investigate the condensation resistance of steel stud wall corner details in modular buildings by thermal simulation. The condensation resistance was evaluated by temperature difference ratio according to ISO 13788. The result showed that there was little difference between the alternatives of adding cavity and insulation. Separation of interstitial steel studs showed outstanding effect on the improvement of temperature difference ratio.

Heat Mitigation Effects of Urban Space based on the Characteristics of Parks and their Surrounding Environment (도시공원 및 주변환경의 특성이 도시공간의 온도저감에 미치는 영향)

  • Suh, Jung-Eun;Oh, Kyu-Shik
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.1-14
    • /
    • 2020
  • In order to improve the urban thermal environment, efforts are being made to increase green areas in cities that include park construction, planting, and green roofing. Among these efforts, urban parks play an important role not only in improving the urban thermal environment, but also in terms of ecosystem services (serving as resting places for citizens, providing cleaner air quality, reducing noise, etc.). Therefore, the purpose of this study is to suggest planning and management guidelines for urban parks that are effective in improving the thermal environment, by analyzing the urban surface temperature reduction performance of urban parks. To do this, first, land surface temperature was calculated by using Landsat 8 images. Second, the PCI (Park Cool Island) index was calculated to identify the temperature reduction performance of urban parks. Third, the characteristics of parks (area, shape, vegetation) and the surrounding spatial characteristics (land cover, building-related variables, etc.) were identified. Finally, the relationship between the PCI indices (PCI scale, PCI effect, PCI intensity) and the characteristics of the parks and their surroundings were analyzed. The results revealed that the parks consisting of a larger area, simple shape, and higher tree coverage ratio had increased PCI performance, and were advantageous for improving the urban thermal environment. Meanwhile, PCI performance was found to have decreased in areas with a higher impermeable area ratio and building coverage ratio. The outcomes of this study can be used to identify priority areas for planning and management of urban parks and can also be utilized as planning and management guidelines for improving urban thermal environment.

High-Rise Urban Form and Environmental Performance - An Overview on Integrated Approaches to Urban Design for a Sustainable High-Rise Urban Future

  • Yang, Feng
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.87-94
    • /
    • 2016
  • High-rise as a building typology is gaining popularity in Asian mega-cities, due to its advantages in increasing volumetric density with limited land resources. Numerous factors contribute to the formation of high-rise urban form, from economical and institutional, environmental to socio-political. Environmental concerns over the impact of rapid urbanization in developing economies demand new thought on the link between urban environment and urban form. Outdoor and indoor climate, pedestrian comfort, and building energy consumption are all related to and impacted by urban form and building morphology. There are many studies and practices on designing individual "green" high-rise buildings, but far fewer studies on designing high-rise building clusters from the perspective of environmental performance optimization.. This paper focuses on the environmental perspective, and its correlation with the evolution of the high-rise urban form. Previous studies on urban morphology in terms of environmental and energy performance are reviewed. Studies on "parameterizing" urban morphology to estimate its environmental performance are reviewed, and the possible urban design implications of the study are demonstrated in by the author, by way of a microclimate map of the iconic Shanghai Xiao Lujiazui CBD. The study formulates the best-practice design guidelines for creating walkable and comfortable outdoor space in a high-rise urban setting, including proper sizing of street blocks and building footprint, provision of shading, and facilitating urban ventilation.

Comparison Analysis of Building's Heating Energy Consumption in the Apartment Complex - Focused on Apartment in Daejeon - (공동주택 단지 내 동별 난방에너지소요량 비교 분석 - 대전지역 아파트단지를 중심으로 -)

  • Jang, Young-Hye;Kim, Jeong-Gook;Kim, Jonghun;Jeong, Hakgeun;Hong, Won-Hwa;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: Apartment is a typical residential type in Korea. In the past, apartment types were very monotonous. But today, the types of complex are changed because personal needs have been diversified and personalized. In order to meet those needs, construction companies are constructing various types of apartments. The more apartment types are diverse, the more the energy problems are taken place. So, the purpose of this study is to solve the problem of energy gap in the same complex through improving the thermal transmittance of wall. Method: Heating energy consumption of Building Energy Efficiency Rating System and heating energy usage of apartment show a similar trend on the graph. In order to identify the best position of heating energy consumption difference reduction, we change the building's U-value of front, back, side walls. Result: In the A complex, maximum and minimum heating energy consumption building's shapes are flat. the best efficiency is side U-value change and the worst is front change. In the E complex, maximum heating energy consumption building's shape is tower and minimum building shape is flat. Consequently, the front and back wall performance change was little effect to reduce energy gap, while the change of side wall's U-value show the great reduction between building's energy consumptions.

A Performance Analysis on a Chiller with Latent Thermal Storage According to Various Control Methods (잠열 축열식 칠러시스템의 제어 방식에 따른 성능 분석)

  • Kang, Byung Ha;Kim, Dong Jun;Lee, Choong Seop;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.592-604
    • /
    • 2017
  • A chiller, having a thermal storage system, can contribute to load-leveling and can reduce the cost of electricity by using electricity at night. In this study, the control experiments and simulations are conducted using both conventional and advanced methods for the building cooling system. Advanced approaches, such as the "region control method", divide the control region into five zones according to the size of the building load, and determines the cooling capacities of the chiller and thermal storage. On the other hand, the "dynamic programming method" obtains the optimal cooling capacities of the chiller and thermal storage by selecting the minimum-cost path by carrying out repetitive calculations. The "thermal storage priority method" shows an inferior chiller performance owing to the low-part load operation, whereas the chiller priority method leads to a high electric cost owing to the low utilization of thermal storage and electricity at night. It has been proven that the advanced control methods have advantages over the conventional methods in terms of electricity consumption, as well as cost-effectiveness. According to the simulation results during the winter season, the electric cost when using the dynamic programming method was 6.5% and 8.9% lower than that of the chiller priority and the thermal storage priority methods, respectively. It is therefore concluded that the cost of electricity utilizing the region control method is comparable to that of the dynamic programming method.

System Performance with Variation of Outdoor Unit Layouts at Building Re-entrants

  • Koh, Jae-Yoon;Lee, Hyun-Gu;Zhai, John
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Air-cooled split-type air conditioners (AC) are very popular in high-rise residential and commercial buildings in Korea. The performance of such AC systems varies significantly with system characteristics and environmental conditions. Particularly, the outdoor condensing unit of the system, if poorly cooled due to high density of AC distribution and restricted outdoor space, will result in large decrease of cooling efficiency and increase of electrical energy consumption and may further jeopardize the system reliability. This paper presents a numerical analysis on the thermal and energy performance of a group of air-cooled air conditioners installed at a courtyard of a high-rise building. The study introduces a series of new energy performance indices to assess the group performance of the AC condensers with different outdoor unit layouts. The results not only indicate the COP of the systems, but also quantify the system capacity and energy consumption. The evaluation method and indices developed are useful for guiding the design of the distribution plan of the AC units at building re-entrants.

A Study on the Performance Evaluation of Synthetic Resin Formwork Material (합성수지 거푸집 재료성능 검증에 관한 연구)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Lee, Young-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.151-152
    • /
    • 2019
  • This study length variation test, shock test were conducted to evaluate the performance of synthetic resin form. Results of both thermal length variation test and shock test satisfied the KS standards. for length variation test, the result of the horizontal and vertical valuse were -0.1% in average.

  • PDF

Problem Analysis of Sandwich Insulation Wall System (중단열 시스템의 문제점 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.166-167
    • /
    • 2015
  • Because of energy crisis at all around the world, there is many method and system which for improving energy efficiency has appeared in construction industry. And then, 20% of entire building energy loss is emissed to exterior of buildings, that is important to building's entire energy efficiency. So, many research has been conducted for imporve exterior energy efficiency and generally it called insulation of wall. Method for wall insulation can be classified interior system and exterior system which defined installation place of insulation board whether interior or exterior of structural wall. However, interior system has thermal problem such as thermal-bridge which can be necessarily occur condensation. and exterior system has constructional problem such as difficult to construction because exterior and finish work so expensive construction cost than other insulation method. Thus, sandwich insulation wall system has been appeared for solving these problems. Sandwich insulation system must using wall connecting things because both side walls is divided by center insulation. At this, Through the heat at wall connecter, it can be occured thermal-bridge and broken insulation board when under construction will be bring negative effect by reducing wall thickness and insulation deficit. At this study, we were compared previous sandwich insulation system and analysis these system's problem for develop the improving constructability and performance of sandwich insulation system.

  • PDF

Performance evaluation of MPCM to apply for radiant floor heating system (바닥난방시스템 적용을 위한 MPCM 성능평가)

  • Jeong, Su-Gwang;Jeon, Ji-Soo;Kim, Su-Min
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.475-479
    • /
    • 2012
  • Thermal energy storage (TES) systems using Microencapsulated phase change material (MPCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. We examined a way to incorporate MPCMs with building materials through application for wood-based flooring. Wood-based flooring is commonly used for floor finish materials of residential buildings in Korea. However, wood-based flooring has not performed the characteristic of heat storage. This study is aimed at manufacturing high thermal efficiency wood flooring by increasing its heat storage using MPCM. As a result, this study confirmed that MPCM is dispersed well in adhesive through the scanning electron microscopy analysis. From the differential scanning calorimetry analysis, it can be confirmed that this composite has the characteristic of a thermal energy storage material. Also, we analyzed how this composition was formed by physical combination through the Fourier transform infrared analysis. Also, we confirmed the bonding strength of the material by using the universal testing machine.

  • PDF

Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit (창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Cho, Dong-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.