• Title/Summary/Keyword: Building thermal performance

Search Result 634, Processing Time 0.031 seconds

Characteristic of Insulation with Moisture Content Light-weight Inorganic Foam Ceramic Board (경량무기발포 세라믹보드 및 무기단열재의 함수율에 따른 단열특성)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.198-199
    • /
    • 2013
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The inorganic material has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain water resistance performance of the curtain walls. This study focused on evaluation of insulation of inorganic materials and performance evaluation by thermal conductivity.

  • PDF

The Corrosion Protection Performance of Al and Al-5%Mg Coatings Deposited on Steel Surface by Arc Thermal Metal Spray (강재 표면에 아크 금속 용사된 Al 및 Al-5 % Mg 코팅의 방지 성능)

  • Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.140-141
    • /
    • 2021
  • Arc thermal spray process is widely used to protect the steel from corrosion and abrasion. In the present study, two different coatings i.e. Al and Al-5%Mg were used to compare their corrosion resistance performance and the effect of 5% Mg addition in the properties of deposited coating. The SEM results showed the more compact and less porous morphology of Al-5%Mg coating compared to Al. The corrosion resistance performance of both deposited coatings was studied in artificial ocean water with exposure periods and results are compared. The total impedance values of Al-5%Mg at 0.01 Hz exhibited highest with exposure periods might be attributed to the coating and corrosion products nature and morphology compared to Al coating.

  • PDF

Comprehensive Field Measurement of Indoor Air and Thermal Quality in Naturally Ventilated Office Building with Double-Skin Façade

  • Ito, Kazuhide;Shiraishi, Yasuyuki
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.293-314
    • /
    • 2013
  • Double-Skin Façade (DSF), which is a kind of passive indoor environmental control technique, is effective way to control environmental loads while maintaining the transparency especially in perimeter zone and hence the adoption example of DSF keep increasing recently. The objective of this study was to perform a field survey of air quality environment with natural ventilation through DSF and thermal environment within office building with six stories during a mild climate period in Japan. Moreover, to understand the comprehensive environmental performance of the target building, questionnaire survey was conducted to subjectively evaluate the productivity and satisfaction with the environmental factors in office space. In this field measurement, there was a positive correlation between the DSF internal ventilation flow and the amount of solar radiation on the DSF normal surface; the primary driving force for ventilation in the DSF was considered to be the buoyancy force caused by solar radiation. The results of questionnaire survey with regard to productivity level indicated the need for improvement in the thermal (temperature) and spatial environment (room size and furniture placement).

Analysis of Energy Performance and Green Strategies in the Foreign High-Performance Buildings

  • Park, Doo-Yong;Kim, Chul-Ho;Lee, Seung-Eon;Yu, Ki-Hyung;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • Purpose: In this study, we analyzed the energy performance levels and high-performance technology trends through the case studies of foreign high-performance buildings. Method: Buildings built within 10 years were selected for the analysis of recent trends. we analyzed the buildings of U.S.A, Germany and Japan using LEED certified buildings, Passive House certified buildings and CASBEE certified buildings database for the case study of foreign high-performance buildings. A total of 20 high-performance buildings including 14 cases in U.S.A, 4 cases in Germany and 4 cases in Japan were selected. Annual energy consumption levels for 20 high-performance buildings were collected with the actual energy consumption data or data from simulation programs officially recognized by DOE. Annual energy consumption were compared with the energy performance standard of the office buildings in the CBECS database, ASHRAE Standard 90.1-2004 and Building Energy Efficiency Rating System in Korea. Result: The order of the green strategies applied in the main categories are Renewable Energy(63%), Indoor Environment Control(51%), Envelope Improvement(44%) and HVAC System & Control(28%). Specified strategies most widely used in the sub-categories are high-performance Insulation (70%), High Efficiency Heating, Cooling Source Equipment(85%), Photovoltaic&Solar Thermal(80%) and Daylighting(80%).

A Comparison Analysis on Thermal Performance According to Shape of Steel Stud Applied to Steel House (스틸 하우스 적용 스틸 스터드의 형상에 따른 단열성능 비교 연구)

  • Jang, Cheol-Yong;Lee, Na-Eun;Um, Eun-Jung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.241-245
    • /
    • 2009
  • The dry wall using steel stud is used to buildings in the inside and outside of the country because it has the merit that application is possible to various architecture. The purpose of this study is to measure thermal performance of dry wall which uses steel stud transformed one by using measurement equipment to decrease heat bridge of steel stud and ensure heat performance as dry wall. As a comparative performance test result, dry wall which uses steel stud transformed one has a performance enhancement compare with the dry wall using general steel stud.

  • PDF

Parametric Analysis of Building Energy Impact of Semi-transparent PV (STPV의 건물 에너지 성능에 대한 파라메트릭 분석)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.35-42
    • /
    • 2018
  • Semi-transparent Photovoltaics (STPV) works as an exterior material replacing windows as well as functioning as a electricity generator. As a result, it also affects the building's heating, cooling and lighting loads. In this study, we used the concept of Net Electricity Benefit(NEB) to conduct a parametric analysis of building energy impact of STPV. The NEB of STPV is from $-1kWh/m^2$ to $6kWh/m^2$. Since NEB represents the amount of energy increase or decrease when STPV is applied compared to the standard window, a value of 0 or less means that the demand for building energy can be increased rather than applying a general window having high thermal performance and high visible light transmittance value. Therefore, it is necessary to perform a comprehensive performance evaluation considering both the performance evaluation based on the existing power generation performance and the influence on the building energy.

An Experimental Study on Thermal and Electrical Performance of an Air-type PVT Collector (실험에 의한 공기식 PVT 컬렉터의 열·전기 성능에 관한 연구)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.23-32
    • /
    • 2019
  • PVT (Photovoltaic/thermal) system is technology that combines PV and solar thermal collector to produce and use both solar heat and electricity. PVT has the advantage that the energy production per unit area is higher than any single use of PV or solar thermal energy systems because it can produce and use heat and electricity simultaneously. Air-type PVT collectors use air as the heat transfer medium, and the air flow rate and flow pattern are important factors affecting the performance of the PVT collector. In this study, a new air-type PVT collector with improved thermal performance was designed and manufactured. And then thermal and electrical performance and characteristics of air-type PVT collector were analyzed through experiments. For the thermal performance analysis of the PVT collector, the experiment was conducted under the test conditions of ISO 9806:2017 and the electrical performance was analyzed under the same conditions. As a result, the thermal efficiency increased to 26~45% as the inlet flow rate of PVT collector increased from $60{\sim}200m^3/h$. Also, it was confirmed that the air-type PVT collector prevents the PV surface temperature rise according to the operating conditions.

Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material (PCM 함유된 축열석고보드의 열환경특성)

  • Kwon, Oh-Hoon;Yun, Huy-Kwan;Han, Seong-Kuk;Ahn, Dae-Hyun;Shim, Myeong-Jin;Cho, Sung-Woon;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.570-574
    • /
    • 2010
  • The main function of conventional insulation materials is only to block the heat transfer and reduce heat loss from the building. On the other hand, thermal storage materials can work as an energy saver by absorbing or emitting heat within a specific temperature range. Thermal storage materials for building can maintain a constant temperature by effectively regulating the cycle of indoor temperature. As a result, we can enhance the performance of a cooling and heating system efficiently. In this study, phase change materials (PCMs) were added as thermal storage materials into gypsum boards which are extensively used for building material and we found out the thermal environmental characteristics. In addition, we checked out some problems when applying the thermal storage materials to buildings. Finally, This study set out to examine the degree of environmental-friendly characteristics of thermal storage building materials by analyzing the amount of TVOC and HCHO contents with the possibility of pollutants emission.