• Title/Summary/Keyword: Building information modelling (BIM)

Search Result 40, Processing Time 0.023 seconds

Investigation of health and safety impact from the 'Site BIM' tools in the live construction sites

  • Shah, Raj;Edwards, Joel
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Construction in the UK is the second most dangerous industry in terms of fatal and minor injuries according to the 2014 report of HSE. The use of mobile devices such as iPad, Tablets and Smart phones on the live construction projects is also on the increase in the UK due to the 2016 - Level 2 BIM (Building Information Modelling) implementation target, set by the UK Government. Hence, the use of such devices may become a distraction from work activities on the construction sites and will cause a major risk to the end users. The subject of improving safety of BIM use is widely researched, but there is a gap in knowledge about the actual use of the mobile devices and perception of 'Site BIM', on the construction site activities. The main gap identified in the 'Site BIM' is the health and safety aspect of using such devices on the construction sites. A safer way of working with such devices needs to be identified to avoid any potential site hazards and fatalities before the widespread use of the devices are found on the construction projects. In that context, the paper is aimed to highlight the safety issues that are required to address for the successful implementation of the mobile devices for safer use of the 'Site BIM'. Questionnaire survey was used to collect the site information among construction professionals in the UK. The survey findings suggested that a proactive approach may be helpful to stop potential hazards and risks causing by the use of mobile devices and potential measures need to be identified before any injuries and incidents occur. The paper concludes that training, changing size of mobile devices and ensuring a separate induction training for 'Site BIM' tools will improve the health and safety of the end users of the mobile devices at the live construction sites.

BIM-based Lift Planning Workflow for On-site Assembly in Modular Construction Projects

  • Hu, Songbo;Fang, Yihai;Moehler, Robert
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.63-74
    • /
    • 2020
  • The assembly of modular construction requires a series of thoroughly-considered decisions for crane lifting including the crane model selection, crane location planning, and lift path planning. Traditionally, this decision-making process is empirical and time-consuming, requiring significant human inputs. Recently, research efforts have been dedicated to improving lift planning practices by leveraging cutting-edge technologies such as automated data acquisition, Building Information Modelling (BIM) and computational algorithms. It has been demonstrated that these technologies have advanced lift planning to some degree. However, the advancements tend to be fragmented and isolated. There are two hurdles prevented a systematic improvement of lift planning practices. First, the lack of formalized lift planning workflow, outlining the procedure and necessary information. Secondly, there is also an absence of a shared information environment, enabling storages, updates and the distribution of information to stakeholders in a timely manner. Thus, this paper aims to overcome the hurdles. The study starts with a literature review in combination with document analysis, enabling the initial workflow and information flow. These were contextualised through a series of interviews with Australian practitioners in the crane-related industry, and systematically analysed and schematically validated through an expert panel. Findings included formalized workflow and corresponding information exchanges in a traditional lift planning practice via a Business Process Model and Notation (BPMN). The traditional practice is thus reviewed to identify opportunities for further enhancements. Finally, a BIM-based lift planning workflow is proposed, which integrates the scattered technologies (e.g. BIM and computational algorithms) with the aim of supporting lift planning automation. The resulting framework is setting out procedures that need to be developed and the potential obstacles towards automated lift planning are identified.

  • PDF

Demystifying the Definition of Digital Twin for Built Environment

  • Davari, Saman;Shahinmoghadam, Mehrzad;Motamedi, Ali;Poirier, Erik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1122-1129
    • /
    • 2022
  • The concept of Digital Twin (DT) has been receiving an increasing amount of attention in the construction management and building engineering research domains. Although the benefits of DT are evident, confusion with regards to the concept of DTs and its relationship with others such as Cyber-Physical Systems (CPS), Building Information Modelling (BIM) and Internet of Things (IoT) remains. This paper aims to help allay this confusion through an in-depth analysis of the definition of DT and its unique characteristics. As such, a review of the past and current definitions of DT and CPS in various domains is performed. An analysis is then conducted to identify the overlaps between the definition of DT with CPS, as well as with BIM and IoT. Finally, given the relatively closer resemblances between DT and CPS, a set of four distinct dimensions enabling their comparative analysis and highlighting their shared and unique characteristics is discussed. This paper contributes to the existing literature by exploring the definition of DT and presenting two original conceptualizations that help further refine the concept of DT in the construction and management and building engineering domain.

  • PDF

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

Generative AI-based Exterior Building Design Visualization Approach in the Early Design Stage - Leveraging Architects' Style-trained Models - (생성형 AI 기반 초기설계단계 외관디자인 시각화 접근방안 - 건축가 스타일 추가학습 모델 활용을 바탕으로 -)

  • Yoo, Youngjin;Lee, Jin-Kook
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This research suggests a novel visualization approach utilizing Generative AI to render photorealistic architectural alternatives images in the early design phase. Photorealistic rendering intuitively describes alternatives and facilitates clear communication between stakeholders. Nevertheless, the conventional rendering process, utilizing 3D modelling and rendering engines, demands sophisticate model and processing time. In this context, the paper suggests a rendering approach employing the text-to-image method aimed at generating a broader range of intuitive and relevant reference images. Additionally, it employs an Text-to-Image method focused on producing a diverse array of alternatives reflecting architects' styles when visualizing the exteriors of residential buildings from the mass model images. To achieve this, fine-tuning for architects' styles was conducted using the Low-Rank Adaptation (LoRA) method. This approach, supported by fine-tuned models, allows not only single style-applied alternatives, but also the fusion of two or more styles to generate new alternatives. Using the proposed approach, we generated more than 15,000 meaningful images, with each image taking only about 5 seconds to produce. This demonstrates that the Generative AI-based visualization approach significantly reduces the labour and time required in conventional visualization processes, holding significant potential for transforming abstract ideas into tangible images, even in the early stages of design.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

New or Renew: Constructing Tomorrow with Kit of Parts

  • Ilkay Standard;Sena Kucukayan
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.97-102
    • /
    • 2024
  • In this paper, we would like to share our ongoing research on global population and demographic shifts and the corresponding need for diverse responses. As population growth varies worldwide, the pressing issue is the current global housing shortage. The USA alone lacks 4 million homes, underlining the urgency for new construction and renewal of existing. Our focus is primarily on new building processes, which must also incorporate elements of renewal for future sustainability. Our research addresses several key questions: How will roles for construction professionals change? What should be the primary goal of the design process? What types of technologies are currently available, and which aspects of the process can be enhanced with AI? A significant part of our study is exploring sustainable building methods that reduce embodied carbon and increase speed of construction. Our goal is to extend the transition from smart homes to cities, analyzing the evolution towards smart communities and cities. A critical aspect of our research is the 'kit of parts concept, involving prefabrication and modular construction. This approach is essential for both rebuilding and new projects, potentially lowering costs in manufacturing and design for long term. Lastly, we present a detailed comparison of the construction industry with manufacturing.

Evaluation of Practical Requirements for Automated Detailed Design Module of Interior Finishes in Architectural Building Information Model (건축 내부 마감부재의 BIM 기반 상세설계 자동화를 위한 실무적 요구사항 분석)

  • Hong, Sunghyun;Koo, Bonsang;Yu, Youngsu;Ha, Daemok;Won, Youngkwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.5
    • /
    • pp.87-97
    • /
    • 2022
  • Although the use of BIM in architectural projects has increased, repetitive modeling tasks and frequent design errors remain as obstacles to the practical application of BIM. In particular, interior finishing elements include the most varied and detailed requirements, and thus requires improving its modelling efficiency and resolving potential design errors. Recently, visual programming-based modules has gained traction as a way to automate a series of repetitive modeling tasks. However, existing approaches do not adequately reflect the practical modeling needs and focus only on replacing siimple, repetitive tasks. This study developed and evaluated the performance of three modules for automatic detailing of walls, floors and ceilings. The three elements were selected by analyzing the man-hours and the number of errors that typically occur when detailing BIM models. The modules were then applied to automatically detail a sample commercial facility BIM model. Results showed that the implementations met the practical modeling requirements identified by actual modelers of an construction management firm.

Web and Building Information Model-based Visualization of Indoor Environment -Focusing on the Data of Temperature, Humidity and Dust Density- (웹 및 건물정보모델기반 실내 환경 디지털 시각화 -온습도와 미세먼지 농도 데이터를 중심으로-)

  • Huang, Jin-hua;Lee, Jin-Kook;Jeon, Gyu-yeob
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.327-336
    • /
    • 2017
  • People spend most of their time in the indoor environment. Among the various indoor environmental factors, air and thermal environment directly affect human's health and efficiency of work. Therefore, efficient monitoring of indoor environment is highly important. For assisting the residents to understand the state of the indoor environment much easier and more intuitive, this paper analyze the visualization cases of the conventional indoor environment. Then explore the direction of improvement for the visualization method to propose a more effective visualization method. The approach of web and BIM(Building Information Model)-based visualization of indoor environment proposed in this study is composed of four major parts: 1) the generation of the model data of the building; 2) the generation of indoor environmental data; 3) the creation of visualization elements; 4) data mapping. Then it realized through the generating process of visualization results.

QR code as speckle pattern for reinforced concrete beams using digital image correlation

  • Krishna, B. Murali;Tezeswi, T.P.;Kumar, P. Rathish;Gopikrishna, K.;Sivakumar, M.V.N.;Shashi, M.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.67-84
    • /
    • 2019
  • Digital Image Correlation technique (DIC) is a non-contact optical method for rapid structural health monitoring of critical infrastructure. An innovative approach to DIC is presented using QR (Quick Response) code based random speckle pattern. Reinforced Cement Concrete (RCC) beams of size $1800mm{\times}150mm{\times}200mm$ are tested in flexure. DIC is used to extract Moment (M) - Curvature (${\kappa}$) relationships using random speckle patterns and QR code based random speckle patterns. The QR code based random speckle pattern is evaluated for 2D DIC measurements and the QR code speckle pattern performs satisfactorily in comparison with random speckle pattern when considered in the context of serving a dual purpose. Characteristics of QR code based random speckle pattern are quantified and its applicability to DIC is explored. The ultimate moment-curvature values computed from the QR code based random speckled pattern are found to be in good agreement with conventional measurements. QR code encrypts the structural information which enables integration with building information modelling (BIM).