• Title/Summary/Keyword: Building energy performance assessment

Search Result 105, Processing Time 0.026 seconds

An Experimental Study of 30CMM Solar Transpired Collector and Cyclone(STCC) System on Indoor Air Dust Removal Performance (30CMM급 태양기공 전기집진 설비의 실내분진 정화 능력에 관한 실험연구)

  • Noh, Ji-Hee;Park, Sang-Hyun;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.37-45
    • /
    • 2005
  • Higher requirement of advanced building design code and the development of construction technique have resulted in more thermal and air tight buildings. This has caused the sick building syndrome in a indoor air quality has been relatively getting worse. A new concept with a solar fresh air heating and electrostatic precipitator or called as STCC(Solar Transpired Collector and Cyclone) has been proposed to solve this IAQ issue. This paper describes the assessment study of STCC system under different outdoor airflow rates. The experiment was carried out under real condition with 30CMM STCC system test facility. Incense smoke was used to study the particle concentration decay trends under outdoor airflow rates 0CMM, 10CMM, 20CMM, 30CMM, with applied voltages of 5kV and 15kV for collecting and discharging electrodes of an Electrostatic Precipitator. Result shows that the particle decay increases by increasing the outdoor airflow rates. The collection efficiency, dust cleaning effectiveness(P) and application area calculation result comparisons have also been studied. This factors could be used to estimate how a dust of indoor air quality(IAQ) and removed for a building space with a STCC system.

A Study on the Certified Ground Source Heat Pump and Performance Analysis (지열원 히트펌프 유닛 인증 현황 및 성능 분석에 관한 연구)

  • Chang Woo Yang;Hee Jeong Kang;Jong Min Choi
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.22-32
    • /
    • 2022
  • To reduce energy consumption and CO2 emission in building sector, a ground source heat pump system has been highly adopted due to its high efficient by many regulation. A certification system has been operated to distribute reliable and high-efficient heat pump units. In this study, the performance status of the recently certified ground source heat pump unit with components was investigated. All heat pump units certified from 2015 to 2020 were water to water heat pump types. Compared to the past, higher capacity systems over 400 kW have been certificed. The cooling COP of the heat pump unit based on certification criteria showed higher value than the heating COP. It is highly recommended to revise the certified criteria values considering operating conditions individually. Most of ground source heat pump units have employed scroll type compressors and plate type heat exchangers with HFC refrigerant.

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

Performance characteristics of building-integrated transparent amorphous silicon PV system for a daylighting application (자연채광용 박막 투광형 BIPV 창호의 발전특성 분석 연구)

  • Yoon, Jong-Ho;Kim, Seok-Ge;Song, Jong-Wha;Lee, Sung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.280-283
    • /
    • 2007
  • The first grid-connected, building-integrated transparent amorphous silicon photovoltaic installation has been operated since October 2004 in Yongin, Korea. The 2.2kWp transparent PV system was applied to the facade of entrance hall in newly constructed KOLON E&C R&D building. The PV module is a nominal 0.98m ${\times}$ 0.95m, 10% transparent, laminated, amorphous(a-Si) thin-film device rated at 44 Wp per module. To demonstrate the architectural features of thin film PV technologies for daylighting application, transparent PV modules are attached to the building envelope with the form of single glazed window and special point glazing(SPG) frames. Besides power generation, the 10% transmittance of a-Si PV module provides very smooth natural daylight to the entrance hall without any special shading devices for whole year. The installation is fully instrumented and is continuously monitored in order to allow the performance assessment of amorphous silicon PV operating at the prevailing conditions. This paper presents measured power performance data from the first 12 months of operation. For the first year, annual average system specific yield was just 486.4kWh/kWp/year which is almost half of typical amorphous silicon PV output under the best angle and orientation. It should be caused by building orientation and self-shading of adjacent mass. Besides annual power output, various statistical analysis was performed to identify the characteristics of transparent thin film PV system.

  • PDF

Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces

  • Taiyari, Farshad;Mazzolani, Federico M.;Bagheri, Saman
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.525-535
    • /
    • 2019
  • The seismic performance of steel frames equipped with a particular type of bending dissipative braces (BDBs) having U elements, which has recently been introduced and tested by the authors, is investigated. For this purpose, two structural systems, i.e., simple and dual steel building frames, both with diagonal BDBs and different number of stories, are considered. After providing a design method of this new BDB, the detailed structural models are developed in the OpenSees platform to perform nonlinear dynamic analyses. Seismic performance factors like ductility, overstrength, response modification and deflection amplification factors are calculated using incremental dynamic analysis (IDA). In addition, to assess the damage probability of the structural models, their seismic fragilities are developed. The results show high energy dissipation capacity of both structural systems while the number of U elements needed for the bracing system of each story in the moment frames are less than those in the corresponding non-moment (simple) frames. The average response modification and deflection amplification factors for both structural schemes are obtained about 8.6 and 5.4, respectively, which are slightly larger than the corresponding recommended values of ASCE for the typical buckling-restrained braces (BRBs).

Performance of Downward-blowing Air Curtain m Heating Space Considering External Wind Condition (외부바람의 영향을 고려한 난방공간에서의 하향토출 에어커튼의 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.417-423
    • /
    • 2009
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. Design data for the air curtain given by previous researchers do not mention the influence of wind speed. Thus, this paper presents a performance of single jet air curtain in heating space when the wind blows toward the opening space of the building. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A new safety factor is also proposed for determination of air curtain jet velocity under the various wind conditions.

Effect of MDOF structures' optimal dampers on seismic fragility of piping

  • Jung, Woo Young;Ju, Bu Seog
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.563-576
    • /
    • 2015
  • Over the past few decades, seismic retrofitting of structural systems has been significantly improved by the adoption of various methods such as FRP composite wraps, base isolation systems, and passive/active damper control systems. In parallel with this trend, probabilistic risk assessment (PRA) for structural and nonstructural components has become necessary for risk mitigation and the achievement of reliable designs in performance-based earthquake engineering. The primary objective of the present study was to evaluate the effect on piping fragility at T-joints due to seismic retrofitting of structural systems with passive energy-dissipation devices (i.e., linear viscous dampers). Three mid-rise building types were considered: without any seismic retrofitting; with distributed damper systems; with optimal placement of dampers. The results showed that the probability of piping system failure was considerably reduced in a Multi Degree of Freedom (MDOF) building retrofitted with optimal passive damper systems at lower floor levels. This effect of damper systems on piping fragility became insignificant as the floor level increased.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Performance Variation of the Air Curtain for Various Discharge Angles in Feating Space (난방공간에서 에어커튼의 토출각도 변화에 따른 성능 변화)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. The discharge angle of air curtain is very important as the sealing efficiency is affected by it. This paper presents a performance of single jet air curtain in heating space when the discharge angle of nozzle changes. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A condition of discharge angle that has the highest sealing efficiency is proposed.

The Performance Assessment Study of Solar Energy Cogeneration panel for Building Integrated System (건물통합을 위한 태양에너지 cogeneration panel 특성 분석 연구)

  • Kim, Yong-Hwan;Kang, Eun-Chul;Hyun, Myung-Taek;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.35-42
    • /
    • 2006
  • Solar Thermal-Electric Integrated system can be used to generate heat and electricity simultaneously and can improve indoor all qualify. So, it can save heating and electricity cost as it operates at relatively lower temperatures. In this study, one pv module was fixed on a normal wall and a pv module was mounted on a solarwall. And a ventilation fan in the solar energy cogeneration panel was operated from 12:00 to 17:00 hours. Experimental results are recorded and anaysized. The comparison of results show that the temperature of PV on solar energy cogeneration panel was decreased by $7{\sim}9^{\circ}C$ and the electrical output was improved by $2{\sim}3W$ compared with a PV system without solarwall.