• Title/Summary/Keyword: Building Thermal Simulation

Search Result 286, Processing Time 0.025 seconds

A study on the PAL according to thermal characteristic of building skin and perimeter zone depth (건물 외피의 열특성과 외주부 깊이에 따른 PAL에 관한 연구)

  • Kim, Ji-Hye;Kim, Hwan-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • The perimeter zone is space which receives a significant effect of ambient condition, it is necessary to improve the thermal performance in order to building energy saving. For this reason, a lot of study about the active approach is being performed, such as perimeter-less air conditioning system. But the performance of the perimeter zone is necessary to improve, through the passive approach. Therefore, the purpose of this study is to provide basic materials of energy-saving design of perimeter zone, based of the PAL that simulation changing the thickness of insulation and the rate of windows.

Performance Evaluation of Electrochromic Window System by Different Orientations and Locations in Korea (Electrochromic 창호 적용시 지역별 건물 냉난방 에너지 소비량 절감성능)

  • Shin, Jae-Yoon;Chae, Young Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.75-84
    • /
    • 2018
  • The most crucial point of reducing building energy is application of high performance envelope. The amount of heat exchange through window is highest in comparison of other envelopes so that heat exchange through window influence directly with building energy consumption. The window energy performance can be define with thermal, leakage and optical performance. In previous study we can confirmed that not only thermal performance but also optical performance are considered, 11% to 15% of building energy consumption can be reduced. Smart window system has potential of energy saving so that many industry field use smart window system including architectural area and these aspect causes smart window market continuous growth year by year. In this study, building energy consumption has been analyzed which consist of smart window that dynamically control optical states. The consideration of standard commercial building model for research, the reference medium size commercial building model of DOE (Department Of Energy, USA) has been used. The building energy simulation result of 4 axis in 8 regions in Korea shows 8% to 22% reduction of building energy consumption by application of smart window system.

Evaluation of the Outdoor Radiant Thermal Environment by Building Scale and Block Type of Office Building in Summer (사무소건물의 규모 및 배치유형에 따른 하기 옥외 복사열환경 평가)

  • Park, Su-Jin;Jung, Sun-Young;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of this study is to evaluate of the outdoor thermal environment by building scale and block type as variable factors. In this study, 18 cases of office in central business district that have different condition are compared about their surface temperature, HIP(Heat Island Potential), and MRT(Mean Radiant Temperature). They are simulated with 3-dimension numerical simulation software named Hoyano-model. The output results contain visualized distribution chart and numerical data. The results of evaluation are as follows. (1)The surface temperature of the building becomes higher as building coverage ratio is higher but floor area ratio is lower. In same conditions, unified block type is maximum $3.2^{\circ}C$ higher than divided block type. (2)HIP shows different daily pattern as block type. During daytime, divided block type is much higher than unified block type but after sunset, it is changed. (3)MRT shows different distribution pattern as sunlight moves expecially at noon. (4)As the results of this study, cases that have high floor area ratio condition show lower surface temperature by tendency to stay low indoor temperature in office building and big rate of windows on building surface.

Effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height (높이별 기상변화를 고려한 초고층 건축물의 외피종류별 냉난방 부하특성 분석)

  • Choi, Jong-Kyu;Kim, Yang-Soo;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.337-344
    • /
    • 2012
  • Today, the number of super tall buildings are under construction or being planed in Middle East and Asian Countries. For example the burj Khalifa, the tallest building in the world, is completed in 2008 and the height of that is about 800m. Also, Lotte World Tower is under construction in Korea. External environmental conditions such as wind speed, air temperature, humidity and solar radiation around the super tall building differs according to the building height due to the vertical micro climate change. However, the meteorological information used for AC design of building is obtained typically from standard surface meterological station data(~2m above the ground). In this paper the effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height was analyzed with simulation method. As results of this research, the guideline to select the building envelop alternatives for super tall building will be suggested in this paper.

  • PDF

Evaluation of Overall Heat Transfer Coefficient of Different Greenhouse Thermal Screens Using Building Energy Simulation (BES를 이용한 온실용 보온커튼의 관류열전달계수 산정)

  • Rasheed, Adnan;Lee, Jong Won;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.294-301
    • /
    • 2018
  • In winter, thermal screens are widely used to reduce heat loss from greenhouse to save energy. Unfortunately, not much data are available to the farmer to compare thermal screens while selecting the one that meets their specific requirements. Thus, there is a need to investigate the thermal performance of thermal screens. To address this issue, the Building Energy Simulation (BES) model of a hot box was used to calculate the overall heat transfer coefficient (U-value) of the thermal screens. To validate the model, computed and experimental U-values of single-and double-layered polyethylene (PE) material were compared. This validated model was used to predict the U-values of the selected thermal screens under defined weather conditions. We quantified the U-values of each selected material and significant changes in their U-values were noted in response to different weather conditions. Notably, the thermal properties of the tested screens were taken from the previous literature to calculate U-values using the BES model. The U-values of the thermal screens can help researchers and farmers evaluate their screens and make pre-design decisions that suit their investment capabilities.

Simulation and Verification Experiment of Cooling and Heating Load for a Test Space with Forced Ventilation (강제환기가 적용된 시험공간에서 냉난방부하의 시뮬레이션 및 실증실험)

  • Kim, Dong-Hyuk;Hong, Hi-Ki;Yoo, Ho-Seon;Kim, Ook-Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.947-954
    • /
    • 2006
  • Building energy consumption according to the ventilation has been considered to be an important subject. The purpose of this study is to investigate the cooling and heating loads in a test space with a forced ventilating system. In the test space, on/off controlled air-conditioning and forced ventilating facility were operated between 8 : 30 to 21 : 00 during 4 days and some important data like temperatures and energy consumption were measured to obtain actual thermal loads. The simulation was carried out in a mode of temperature level control using a TRNSYS 15.3 with a precisely measured air change amount and performance data of air-conditioner. Heating load and cooling load including sensible and latent were compared between by experiment and by simulation. Both of thermal loads associated with ventilation show a close agreement within an engineering tolerance.

Han-ok Construction Simulation based on Environmental Analysis (환경분석기반 한옥 시공 시뮬레이션에 관한 연구)

  • Kim, Mi-Kyoung;Jun, Han-Jong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.292-299
    • /
    • 2011
  • Han-ok has a long history and cultural traditions. It has green and healthy and culture but high construction costs, thermal insulation performance of residential and vulnerable to fires and have a weakness for maintenance. However, modernized resident housing, Han-ok is required to improve in terms of environmental aspect due to its weakness for insulating and inconvenience for modem era. Also Han-Ok's building is criticized as a huge dependence on subjective building experiences. This is pointed to be the biggest problem, Han-ok has. Traditionally it does not have a scientific and specific manual for construction. In this research, process simulation was adopted to develop Han-Ok's environmental improvements. In terms of LCC (Life Cycle Cost) aspect, however, Han-Ok's environmental characteristics are examined to suggest an appropriate Han-Ok construction method. Also the result of this research would be utilized to base the information database for efficient constructing and its management in new Han-Ok constructing industry.

Evaluation of hourly temperature values using daily maximum, minimum and average values (일 최고, 최저 및 평균값을 이용한 시간단위 온도의 평가)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.81-87
    • /
    • 2009
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design.. Building designers often now predict the performance of buildings simulation programmes that require hourly weather data. However, not all weather stations provide hourly data. Climate prediction models such as HadCM3 also provide the daily average dry bulb temperature as well as the maximum and minimum. Hourly temperature values are available for building thermal simulations that accounts for future changes to climate. In order to make full use of these predicted future weather data in building simulation programmes, algorithms for downscaling daily values to hourly values are required. This paper describes a more accurate method for generating hourly temperature values in the South Korea that uses all three temperature parameters from climate model. All methods were evaluated for accuracy and stability in terms of coefficient of determination and cumulative error. They were compared with hourly data collected in Seoul and Ulsan, South Korea.

Predictive Evaluation of Outdoor Thermal Environment of Flat-type Apartment Houses and Tower-type Apartment Houses in summer (판상형 및 탑상형 아파트의 여름철 옥외 열환경 예측 평가)

  • Jeong, Seon-Yeong;Yoon, Seong-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.877-882
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of outdoor thermal environment of flat-type apartment houses and tower-type apartment houses in summer by numerical simulation. After inputting a building condition at CAD, we calculated the surface temperature for two apartments by using the numerical simulation of a clear sky day in summer in Seoul. The results indicated that the variation in Heat Island Potential(HIP) of tow apartments were not only in the day but also in the night. According to form of apartment the flat-type apartment houses appeared $1.3^{\circ}C$ more highly tower-type apartment houses.

  • PDF

Evaluation on the Indoor Thermal Environment and Cooling Operation Characteristics of Thermally Activated Building System integrated with Dedicated Outdoor Air System during Cooling Operation in Hot and Humid Climate of Seoul (국내 여름철 기후조건에서 DOAS와 TABS 통합시스템 냉방운전시 실내온열환경 및 운전특성 평가)

  • Lee, YoonSun;Lee, Keo-Re;Chung, Woong June;Lim, Jae-Han
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.45-55
    • /
    • 2018
  • To reduce the energy consumption of HVAC system in buildings, thermally activated building system(TABS) has been applied to low energy building because of energy efficient performance and reduction of peak load. DOAS coupled with a parallel sensible cooling could be promising because TABS handles sensible heat load only. The purpose of this study was to evaluate the indoor thermal environment and cooling operation characteristic of TABS with dedicated outdoor air system(DOAS) in Korea climate. Indoor thermal environment and operation characteristic of TABS integrated with DOAS are investigated at different TABS operation schedules and climate conditions by simulation tests. The result shows that the DOAS is more suitable for hot and humid climates. And also it show that the potential of intermittent operation of TABS.