• Title/Summary/Keyword: Building Multi

Search Result 1,457, Processing Time 0.03 seconds

A Study on the Implementation of Coexistent Reality Technology for Ship Outfitting Inspection (선박 의장 검사를 위한 공존현실 기술 적용에 관한 연구)

  • Ha, Yeon-Chul;Kim, Jin-Woo;Kim, Goo;Shin, Hyun-Shil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • In shipyards, internal materials are assembled after designing and manufacturing each ship's block. Internal material assembly means the installation of parts and equipment except ship's body. In this process, if the assembly of pipes and equipment existing in the block is not done correctly during the assembly between blocks, this causes a lot of costs. In addition, even if the assembly of the internal materials already completed, the production efficiency of the ship is reduced due to rework when problems such as space arrangement of the internal materials occurs. Therefore, this study introduces space arrangement and inspection system before and after hull outfitting work based on coexistence reality technology using 3D design drawing to solve these problems. The various coexistence reality algorithms and inspection systems developed and introduced in this study are based on AR service, which has never been introduced in Korea. So it will be widely applicable to various manufacturing industries using design drawings such as automobiles and architectures as well as ship building process.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part I - Analysis of Detailed Flows (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part I - 상세 흐름 분석)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1643-1652
    • /
    • 2020
  • To investigate the characteristics of detailed flows in a building-congested district, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. For realistic numerical simulations, we used the meteorological variables such as wind speeds and directions and potential temperatures predicted by LDAPS as the initial and boundary conditions of the CFD model. We trilinearly interpolated the horizontal wind components of LDAPS to provide the initial and boudnary wind velocities to the CFD model. The trilinearly interpolated potential temperatures of LDAPS is converted to temperatures at each grid point of the CFD model. We linearly interpolated the horizontal wind components of LDAPS to provide the initial and boundary wind velocities to the CFD model. The linearly interpolated potential temperatures of LDAPS are converted to temperatures at each grid point of the CFD model. We validated the simulated wind speeds and directions against those measured at the PKNU-SONIC station. The LDAPS-CFD model reproduced similar wind directions and wind speeds measured at the PKNU-SONIC station. At 07 LST on 22 June 2020, the inflow was east-north-easterly. Flow distortion by buildings resulted in the east-south-easterly at the PKNU-SONIC station, which was the similar wind direction to the measured one. At 19 LST when the inflow was southeasterly, the LDAPS-CFD model simulated southeasterly (similar to the measured wind direction) at the PKNU-SONIC station.

Study on the ICT Device Safety System Application Examples in Mines (광산에서의 ICT 장비 활용 및 안전시스템 운용 사례 연구)

  • Kim, Seung-Jun;Ko, Young-Hun;Kim, Jung-Gyu;Seo, Man-Keun;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.194-202
    • /
    • 2022
  • An increased number of cases have occurred in applying ICT technology in the resource development field due to factors such as safety, eco-friendliness, and low cost since the 2000s. In Korea, the 2nd mining master plan specified the significance of converging the full cycle of mining and ICT, while the 3rd mining master plan highlighted ICT and smart mining such as supporting the supply of an ICT mining device and introducing demonstrational smart mining. This study introduces the application of an ICT device and safety system operation in the Jangseong underground mine of Korea Cement Co., Ltd. Currently, Jangseong mine combines two different kinds of 3D equipment including the handheld 3D scanner and multi-station that provides both the measurement and 3D scanning to perform a 3D measurement of the mine. Taken from the 3D measurement of the mine, it is now possible to identify any hazardous areas and abnormalities in different directions and analyze the safety of the crown pillar between two stopes in different level. Besides, the real-time location tracking and communications system have established highly efficient rescue and evacuation plans to effectively deal with any accidents in the mine.

Semantic Segmentation for Multiple Concrete Damage Based on Hierarchical Learning (계층적 학습 기반 다중 콘크리트 손상에 대한 의미론적 분할)

  • Shim, Seungbo;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.175-181
    • /
    • 2022
  • The condition of infrastructure deteriorates as the service life increases. Since most infrastructure in South Korea were intensively built during the period of economic growth, the proportion of outdated infrastructure is rapidly increasing now. Aging of such infrastructure can lead to safety accidents and even human casualties. To prevent these issues in advance, periodic and accurate inspection is essential. For this reason, the need for research to detect various types of damage using computer vision and deep learning is increasingly required in the field of remotely controlled or autonomous inspection. To this end, this study proposed a neural network structure that can detect concrete damage by classifying it into three types. In particular, the proposed neural network can detect them more accurately through a hierarchical learning technique. This neural network was trained with 2,026 damage images and tested with 508 damage images. As a result, we completed an algorithm with average mean intersection over union of 67.04% and F1 score of 52.65%. It is expected that the proposed damage detection algorithm could apply to accurate facility condition diagnosis in the near future.

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

A Study on Atmospheric Turbulence-Induced Errors in Vision Sensor based Structural Displacement Measurement (대기외란시 비전센서를 활용한 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.

A Case Study on the Smart Tourism City Using Big Data: Focusing on Tourists Visiting Jeju Province (빅 데이터를 활용한 스마트 관광 도시 사례 분석 연구: 제주특별자치도 관광객 데이터를 중심으로)

  • Junhwan Moon;Sunghyun Kim;Hesub Rho;Chulmo Koo
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.1-27
    • /
    • 2019
  • It is possible to provide Smart Tourism Service through the development of information technology. It is necessary for the tourism industry to understand and utilize Big Data that has tourists' consumption patterns and service usage patterns in order to continuously create a new business model by converging with other industries. This study suggests to activate Jeju Smart Tourism by analyzing Big Data based on credit card usage records and location of tourists in Jeju. The results of the study show that First, the percentage of Chinese tourists visiting Jeju has decreased because of the effect of THAAD. Second, Consumption pattern of Chinese tourists is mostly occurring in the northern areas where airports and duty-free shops are located, while one in other regions is very low. The regional economy of Jeju City and Seogwipo City shows a overall stagnation, without changes in policy, existing consumption trends and growth rates will continue in line with regional characteristics. Third, we need a policy that young people flow into by building Jeju Multi-complex Mall where they can eat, drink, and go shopping at once because the number of young tourists and the price they spend are increasing. Furthermore, it is necessary to provide services for life-support related to weather, shopping, traffic, and facilities etc. through analyzing Wi-Fi usage location. Based on the results, we suggests the marketing strategies and public policies for understanding Jeju tourists' patterns and stimulating Jeju tourism industry.

The Great Western Woodlands TERN SuperSite: ecosystem monitoring infrastructure and key science learnings

  • Suzanne M Prober;Georg Wiehl;Carl R Gosper;Leslie Schultz;Helen Langley;Craig Macfarlane
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.272-281
    • /
    • 2023
  • Ecosystem observatories are burgeoning globally in an endeavour to detect national and global scale trends in the state of biodiversity and ecosystems in an era of rapid environmental change. In this paper we highlight the additional importance of regional scale outcomes of such infrastructure, through an introduction to the Great Western Woodlands TERN (Terrestrial Ecosystem Research Network) SuperSite, and key findings from three gradient plot networks that are part of this infrastructure. The SuperSite was established in 2012 in the 160,000 km2 Great Western Woodlands region, in a collaboration involving 12 organisations. This region is globally significant for its largely intact, diverse landscapes, including the world's largest Mediterranean-climate woodlands and highly diverse sandplain shrublands. The dominant woodland eucalypts are fire-sensitive, requiring hundreds of years to regrow after fire. Old-growth woodlands are highly valued by Indigenous and non-Indigenous communities, and managing impacts of climate change and the increasing extent of intense fires are key regional management challenges. Like other TERN SuperSites, the Great Western Woodlands TERN SuperSite includes a core eddy-covariance flux tower measuring exchanges of carbon, water and energy between the vegetation and atmosphere, along with additional environmental and biodiversity monitoring around the tower. The broader SuperSite incorporates three gradient plot networks. Two of these represent aridity gradients, in sandplains and woodlands, informing regional climate adaptation and biodiversity management by characterising biodiversity turnover along spatial climate gradients and acting as sentinels for ecosystem change over time. For example, the sandplains transect has demonstrated extremely high spatial turnover rates in plant species, that challenge traditional approaches to biodiversity conservation. The third gradient plot network represents a 400-year fire-age gradient in Eucalyptus salubris woodlands. It has enabled characterisation of post-fire recovery of vegetation, birds and invertebrates over multi-century timeframes, and provided tools that are directly informing management to reduce stand-replacing fires in eucalypt woodlands. By building regional partnerships and applying globally or nationally consistent methodologies to regional scale questions, ecological observatories have the power not only to detect national and global scale trends in biodiversity and ecosystems, but to directly inform environmental decisions that are critical at regional scales.

The Impact of the Government's R&D Support and the Introduction of Stock Options by Venture Companies on the Innovation Achievement of Venture Companies (정부의 R&D 지원과 벤처기업의 스톡옵션제도 활용이 벤처기업의 혁신성과에 미치는 영향)

  • Kim, Ho-hyun;Park, Hyung-jun
    • Journal of Venture Innovation
    • /
    • v.7 no.1
    • /
    • pp.17-39
    • /
    • 2024
  • The purpose of this study was to analyze the effect of the government's R&D support and the use of stock options by venture companies on the innovation of venture companies, that is, innovation capabilities and innovation performance. An empirical analysis was conducted using the partial least squares structural equation modeling (PLS-SEM) method using the data from the detailed survey of venture companies conducted on domestic venture confirmation companies. As a result of the analysis, it was found that the benefit of government R&D support had a positive (+) effect on strengthening the innovation capabilities of venture companies, and R&D support also had a positive (+) effect on the innovation performance of venture companies. Next, it was found that the use of stock options by venture companies had a positive (+) effect on the reinforcement of the innovation capabilities of companies and a positive (+) effect on the innovation performance of venture companies. In addition, it was found that the innovation capabilities of venture companies significantly mediate between the government's R&D support and the use of stock options by venture companies and the innovation performance of companies. These analysis results show that the government's R&D support and the use of stock option systems can play a meaningful role in the innovation of venture companies, and also show that the innovation capabilities of venture companies have an important meaning in the process of innovation. Therefore, it is necessary to continue the stance of R&D support for ventures and at the same time to introduce multi-faceted policy measures to support corporate capacity building, and legal and institutional maintenance and policy support to revitalize the stock option system need to be continuously provided.