• Title/Summary/Keyword: Building Material

Search Result 2,834, Processing Time 0.029 seconds

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.

Characteristics of Temperature History of Slab concrete by the Change of Hot wire Heat Capacity at -10℃ (-10℃ 조건에서의 열선 열용량 크기 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.75-77
    • /
    • 2013
  • In this study, the characteristics of temperature history was evaluated for three hot wires with different capacity installed in slab concrete which are relatively thin. Results can be summarized as follows. First, for the case of material using 5W hot wire, all decreased to below zero at or around 24 hours. Similarly, the material using 20W hot wire decreased to 2℃ below zero at or around 80 hours but satisfied the accumulative temperature of 45° D·D at 7 days of material age. On the other hand, the case of 30W hot wire, the biggest capacity, showed the high temperature history of 5℃ in average at all areas except the corners. Thus, the target accumulative temperature was secured at or around the 3 days of material age. Considering the above, the initial damage by freezing can be prevented only if 20W or higher hot wires are used for the slabs at -10℃ of extremely low temperature environment.

  • PDF

A Study on the Life Cycle Energy and $CO_2$ in the Apartment Housings (공동주택의 라이프사이클 에너지와 이산화탄소 추정에 관한 연구)

  • Lee, Kang-Hee;Chae, Chang-U
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.89-96
    • /
    • 2008
  • The environment has played a key role to improve the living condition and develop the industry. In building industries, we should consider the environment and mitigate the environmental affect. For mitigating the its affect, various areas of building technology have been developed and applied into filed work. In addition, the process in applying into field requires to conduct the assessment of the environmental affect and improve its applied technology. A lot of assessment methods are proposed in evaluate the building condition such as post-occupancy evaluation, life cycle management and life cycle assessment. Among these assessment methods, life cycle assessment is effectively utilized the environmental affect in building life cycle. Therefore, this paper aimed at analyzing the energy consumption and $CO_2$ emission in building life cycle, using the life cycle assessment and application of the example in apartment housing. This study shows that the maintenance and the production of building materials stage shares most of the amount of energy consumption and $CO_2$ emission and therefore plays an important role to planning the building in terms of the life cycle. Second, the other stages brings about a very small amount. It is important to decide the building shape and contents to mitigate the environmental affect in terms of material, volume, the pattern of the energy use and others.

The Relationship between Energy Consumption and Factors Affecting Heating and Cooling

  • Park, Kwon Sook;Kim, Seiyong
    • Architectural research
    • /
    • v.19 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • Energy consumption in university building has steadily increased over the last decade, and a strong upward trend in recent years. This study was undertaken to analyze the relationship between energy consumption and their affecting factors, six academic buildings were considered. The factors limited to heating and cooling, which is the main end use (nearly 60 per cent of total energy consumption in university buildings), encompassing system and operating schedules (user activity) and area use. To understand how to building is used, operated and managed, walk-through assessment was conducted as well as interview with university staff. The results show that the energy consumption of the humanities building was somewhat smaller than the consumption of the science and engineering building, and its range was from $31.26kgoe/m^2$ to $23.52kgoe/m^2$, depending on heating and cooling system and area use. And the energy consumption of the science and engineering building was related to operating schedules (user activity) as well as laboratory equipment characteristics. More analysis on a larger number of buildings is required in the future, including building form and material performance level to generalize the significant factors influencing building energy consumption.

A Study on the Indoor Air Pollutants Emission Characteristics by Composed Building Materials (건축자재 마감구성에 따른 실내공기오염물질 방출특성에 관한 연구)

  • Park, Jin-Chul;Rhee, Eon-Ku;Yu, Hyung-Ku
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.3-8
    • /
    • 2005
  • Building parts of Multi-Family Houses are consisted of several building material assembly. Therefore, after selecting building materials with test result of emission intensity and their feature, composed building materials are made equally with actual construction methods, and experimented emission intensity. 7 days after experiment, formaldehyde emission intensity appeared low in an order of Tile Wall, Wood Flooring, Wallpaper, Reum Flooring, Silk Wallpaper, and 20 days after experiment, TVOC emission intensity appeared low in an order of Tile Wall, Reum Flooring, Silk Wallpaper, Wood Flooring, Wallpaper. There was a clear difference in TVOC emission intensity according to kind of building materials. Composed building materials that weight per unit area is big and omission intensity is high, they effect continuously to indoor air because decrement is small.

  • PDF

The Research for Making Flexible Use of Vertical Garden in Architectural Space - The activated use design for architectural outside walls' space - (건축공간에서의 Vertical Garden의 활용에 관한 연구 - 건축물 외벽면 디자인 활용방법 -)

  • Liu, Xiao-Mei;Kim, Eun-Jung;Hong, Kwan-Seon
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.4
    • /
    • pp.12-22
    • /
    • 2014
  • In this study, the basic information and study design characteristics of the Building Outer Wall Vertical Greening were analyzed. Recorded according to the type of research and analysis, through numerical statistics. Building Outer Wall Vertical Greening design the most appropriate and effective ways to present and try to guidelines. The scope of the research of Building Outer Wall Vertical Greening(2001-2013) was selected the most representative examples. Theory and statistical data analysis and case study research was conducted. The main academic monographs, Library Literature, specializing in design magazines and excerpts from the 28 cases analyzed specifically. Building Outer Wall Vertical Greening should be designed synthetically geographical features of the project, existing material, to consider the value of the building. Architect must be designed depending on accident and comprehensive expertise for architectural design of Building Outer Wall Vertical Greening. Building Outer Wall Vertical Greening requires the professional and comprehensive design approach depending on support of the government and people. However, purpose of use, plant, color, Formative expression, culture, locality, maintenance is properly applied in the design process is not easy.

A Decision-Making Model of Integrated Vertical and Horizontal Move Plan for Finishing Material in Righ-Rise Building Construction (고층건물공사 마감자재의 수직$\cdot$수평이동계획이 통합된 의사결정모델)

  • Ahn Byung-Ju;Kim Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.2 s.6
    • /
    • pp.47-58
    • /
    • 2001
  • Of all the site logistics technologies in high-rise building construction, both vertical and horizontal move plan, are the most imperative factors. And the horizontal plan follows lift-up plan as of the vertical plan. However though it may be, temporary lifts on site are numbered by heuristic formulas. The quantity of finishing material cannot be converted into lift-up load per finishing material. The lift-up plan cannot be evaluated the feasibility for finishing material move plan by a reasonable evaluation methodology. The horizontal plan is far from the vertical one. And the information as an input data for the horizontal plan is devoid of package unit size, length, and volume per finishing material. These can hardly result in reasonable and detail decision on how much to use temporary lifts, how long to use these, and where to deposit each finishing material. Therefore, this study is to suggest a decision-making model that can integrate vertical and horizontal material move plan in high-rise building construction and make a decision the plans systematically. And the study is to explain the concept, methodology, and contents of the model applied to a virtual project, named as MT 130 (Millennium Tower 130). By the model, the planner can shift his/her thinking framework on site logistics management products-oriented Into process-oriented. He/she can manage a project by the framework as system thinking, evaluate the feasibility of a lift-up plan, and decide the horizontal plan integrated with the lift-up.

  • PDF

A Research for Identification Method of Sprayed Fire-Resistive Material by Thermal Analysis (열분석을 통한 내화 뿜칠재 일치성분석 연구)

  • Cho, Nam-Wook;Rie, Dong-Ho;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • As recent buildings are getting more high-rise and larger, steel structures, not a reinforced concrete structure, for columns and beams among the main structural members in a building are being widely used. Steels used for the main members of a building are constructed with a fire-resistive structure by applying them with fire-resistive coatings. The introduction of a simple test method that can verify the performance of fire-resistive material constructed on a site without conducting a fire-resistant test(real scale fire test) is needed and this study derived a site analysis method possible to make a rapid and scientific analysis through the analysis of components (instrumental analysis) concerning tire-resistive materials. the possibility of application of it in analyzing congruence over site construction materials by recognizing it as a standard material after securing an inherent fingerprint area of tire-resistive materials of which performance was verified in the concrete through thermal analysis was proved through experiments. This research result can be minimize of casualties, who is harmed to building collapse according to structures fire.

A Study of the Thermal Characteristics of Flooring Materials, Wood, Rock, Aluminum through Observation of its Radiant Environment in the Summer (하절기 복사환경 관측을 통한 석재, 목재, 알루미늄 바닥재의 열특성 평가)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.35-44
    • /
    • 2008
  • In this study, the experiment of the measuring of four different types of flooring materials' thermal characteristics was conducted and examined during the summer. The experimental materials were arranged on the existing slab of the roof, and then its thermal characteristics were examined from the point of view of thermal radiation analysis. The aim of this study is ultimately to draw the fundamental data for improvements in a building's thermal function and reduce the urban heat island phenomena through optimizing the thermal characteristics of the surface covering materials of a building. The results from this study are as follows; 1) Each experimental material's albedo was calculated as 0.83 on the aluminum panel, 0.40 on the rock block, 0.37 on the wood deck and 0.21 on the concrete. It shows that the concrete material, which has the lowest short wave reflective rate, absorbed the most radiation energy and the aluminium panel has absorbed the lowest radiation energy. 2) From the each experimental object's value of the long wave radiation, the concrete material measured the highest, at $628W/m^2$, and the aluminium panel measured the lowest at $412W/m^2$. Therefore, it verifies that the experimental objects' own radiation rate determines the amount of the long wave radiation. 3) The degree of energy absorbency of a building's surface covering materials is greatly influenced by its own albedo and radiation rate, Therefore, it needs to be considered for the improvements in a building's thermal function and reducing the urban heat island phenomena. 4) According to the evaluation result of the each experimental object's overall heat transmission screening function on the roof of a building, the wooden deck is proven to be an excellent material for excluding the outside temperature differences effectively with its characteristic of low heat capacity and conduction. Also its surface temperature on the roof slab and the temperature difference during the day were both measured at low.

An Experimental Study on the Heat Storage Properties of Phase Change Material Using Paraffin Sheets in Building (파라핀을 이용한 건축용 시트형 잠열축열재의 축열특성에 관한 실험적 연구)

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.435-441
    • /
    • 2011
  • The life cycle assessment on greenhouse gas emission of reinforced concrete buildings shows that more than 70 percent of greenhouse gas that is discharged by a building is discharged in the building maintenance stage, including cooling and heating. To reduce the greenhouse gas emission, maintenance planning to minimize the energy consumption is necessary in the design stage. In this paper, two heat storage rooms are tested to save the air cooling energy of the buildings. The specimens are essentially identical, except that chamber A contained paraffin sheets as the finishing material, while the other, chamber B, served as a control. The test results show that chamber A with the paraffin sheets exhibited less temperature change than chamber B without the sheets when temperature was increased outside of the specimens. The heating energy was probably consumed in the phase change of the paraffin sheets, which can be useful for reducing energy consumption related to air cooling during the summer.