• Title/Summary/Keyword: Building Material

Search Result 2,834, Processing Time 0.028 seconds

A Study on the Building Design Guideline Development Considering Photovoltaic Panel Installation (태양광 패널 설치를 고려한 건축 디자인 지침 개발 연구)

  • Moon, Chang-Ho
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to propose the building design guideline considering photovoltaic panel installation through the analysis of relevant guidelines from home and abroad in terms of building design and solar panel installation. Conclusions can be summarized as followings; Considerations in building design : selection of the site with high solar accessibility, avoidance of the shade from the adjacent building & trees, south facing orientation of solar panel in building design, removal of shade on the solar panel from the part of building itself, load consideration of solar panel & fixing materials, safe passage securement for solar system maintenance, and planning of piping and mechanical room for solar system. Considerations in solar panel installation : harmonizing of solar panel with surrounding environment, unity of solar panel orientation & slope, regular maintenance of solar system, (in case of flat roof installation) solar panel installation afloat over the roof, installation area within the roof floor, and lower than parapet height, (in case of sloped roof installation) solar panel installation parallel with the roof slope, ventilation space securement below the panel, installation area within the roof surface, and similar material installation in empty space.

MATERIAL MATCHING PROCESS FOR ENERGY PERFORMANCE ANALYSIS

  • Jung-Ho Yu;Ka-Ram Kim;Me-Yeon Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.213-220
    • /
    • 2011
  • In the current construction industry where various stakeholders take part, BIM Data exchange using standard format can provide a more efficient working environment for related staffs during the life-cycle of the building. Currently, the formats used to exchange the data from 3D-CAD application to structure energy analysis at the design stages are IFC, the international standard format provided by IAI, and gbXML, developed by Autodesk. However, because of insufficient data compatibility, the BIM data produced in the 3D-CAD application cannot be directly used in the energy analysis, thus there needs to be additional data entry. The reasons for this are as follows: First, an IFC file cannot contain all the data required for energy simulation. Second, architects sometimes write material names on the drawings that are not matching to those in the standard material library used in energy analysis tools. DOE-2.2 and Energy Plus are the most popular energy analysis engines. And both engines have their own material libraries. However, our investigation revealed that the two libraries are not compatible. First, the types and unit of properties were different. Second, material names used in the library and the codes of the materials were different. Furthermore, there is no material library in Korean language. Thus, by comparing the basic library of DOE-2, the most commonly used energy analysis engine worldwide, and EnergyPlus regarding construction materials; this study will analyze the material data required for energy analysis and propose a way to effectively enter these using semantic web's ontology. This study is meaningful as it enhances the objective credibility of the analysis result when analyzing the energy, and as a conceptual study on the usage of ontology in the construction industry.

  • PDF

The Recent Trends of Hanok Design - Based on the Analysis of the Hanoks Appeared in Architecture Magazines in the Last 10 Years - (한옥 설계의 최근 경향 연구 - 최근 10년간 건축전문 잡지에 게재된 신축 한옥을 대상으로 -)

  • Lee, Ju-Ock;Han, Pil-Won
    • Journal of architectural history
    • /
    • v.21 no.1
    • /
    • pp.171-186
    • /
    • 2012
  • The objective of this study is to find out the recent trends of hanok design based on 58 hanoks appeared in architecture magazines in the last 10 years. The cases are analyzed in terms of location, size, building form, spatial organization, material, roof form, and the ceiling form of living room. The consequences of this study is as follows; Most of the recent hanoks are built in rural area (91.4%), which shows the hanok is not accepted as an urban house type. Hanoks tend to be built in 2 stories whose 2nd floor is smaller than the 1st floor. (34.5%) The preferred size is total floor area of $99.2{\sim}165.2m^2$ (62.0%), 3 rooms (46.6%) with a traditional ondol room (60.3%). The buildings with ㄱ-shape (43.1%) and linear-shape (27.6%) are preferred, and the compact plan type similar with apartment house appears (13.8%). In the roof design that greatly influences the appearance of building, the traditional design factors such as half-hipped roof (55.2%), double eaves (27.6%), and eaves curve tend to be sustained. In terms of spatial organization, most of recent hanoks have double-layed plan (74.2%). The living room mostly has separately defined space. (82.8%) The indoor and outdoor tend to be connected by a narrow wooden veranda (39.7%), while some cases don't have any wooden floor space (48.3%). The entrance is adopted as an important spatial element in front part of building (75.9%), and it influences the appearance of building. The living room, the counterpart of the wooden floor hall in traditional hanok, and kitchen tend to be interiorized. In terms of material, the cement roof tile and red clay brick are preferred. Consequently, the walls of recent hanoks have the image of brick structure rather than the wooden frame structure of traditonal hanok.

Spatiotemporal chronographical modeling of procurement and material flow for building projects

  • Francis, Adel;Miresco, Edmond;Le Meur, Erwan
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.119-139
    • /
    • 2019
  • Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. Better on-site management allows for substantial productivity improvements and cost savings. The procurement system should be able to manage a wider variety of materials and products of the required quality in order to have less stock, in less time, using less space, with less investment and avoiding multiple storage stations. The objective of this paper is to demonstrate the advantages of using the Chronographic modeling, by combining spatiotemporal technical scheduling with the 4D simulations, the Last Planner System and the Takt-time when modeling the construction of building projects. This paper work toward the aforementioned goal by examining the impact that material flow has on site occupancy. The proposed spatiotemporal model promotes efficient site use, defines optimal site-occupancy and workforce-rotation rates, minimizes intermediate stocks, and ensures a suitable procurement process. This paper study the material flow on the site and consider horizontal and vertical paths, traffic flows and appropriate means of transportation to ensure fluidity and safety. This paper contributes to the existing body of knowledge by linking execution and supply to the spatial and temporal aspects. The methodology compare the performance and procurement processes for the proposed Chronographic model with the Gantt-Precedence diagram. Two examples are presented to demonstrate the benefits of the proposed model and to validate the related concepts. This validation is designed to test the model's graphical ability to simulate construction and procurement.

Prediction of Indoor Radon Concentration through the Exhalation from Korean Yellow Residual Soil, Hwangtoh as a Building Material

  • LEE, Ju Yong;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • The radon gas from nature mainly considers a cause of radon problems, and it is closely affect human life cycle. Korean yellow residual soil, Hwangtoh, widely used as a building material, is considered to be one of major sources of indoor radon. However, there have, as yet, been no studies about radon from Hwangtoh in mass market brands. Here, we investigated the indoor radon concentrations and exhalation rates in four Hwangtohs from different brand names and regional features. The Closed Chamber Method (CCM) conducted by a Continuous Radon Monitor (CRM) has been used for the rates of radon exhalation. Based on equations of previous references, the indoor radon concentrations were deducted. As a result, the radon surface exhalation rates resulted in the 1.4208 to 3.0293 Bq·㎡·h-1 range. Significant differences were found among Hwangtohs according to production regions. Materials with higher radon concentration required a longer time to reach a quasi-steady state in a given environment, in other words, the number of half-life cycles increased from a set starting point. The experimentally identified Hwangtohs demonstrated its safety for construction purposes. There exists, so far, a possibility to exert influence radon emanation due to unidentified factors. Therefore, it is necessary to corroborate with more research by increasing the number of Hwangtohs, considering the other references reported high radon exhalation rates. In addition, it is highly recommended that the radon exhalation rates should be measured for all building materials for preventing human health before the material usage.

Performance Study of High-Performance Synthetic Supporting Materials by Real-Scale Tests (실대형 시험을 통한 고성능 합성지보재의 성능 고찰)

  • Kang, Tae-Ho;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.428-439
    • /
    • 2021
  • A spray-on membrane is a material composed of a polymer, and is a spray-type material that is expected to be able to replace materials such as existing shotcrete or sheet membrane for support or waterproofing purposes. In the previous studies, it is expected that the thickness of the support material such as shotcrete can be reduced if the spray-on membrane is additionally installed on the existing cement-based support materials. In this study, a three-point bending test was performed by a spray-on membrane on the high-performance shotcrete on the outside, and comparison was made between the case where high-performance shotcrete and a spray-on membrane were installed. As a result of comparing the values calculated through the standard test and the real-size bending test, there was no significant difference in terms of flexural strength, but it was found that there was a difference in flexural toughness.

A Study on the Crack Response and Waterproof Properties of High-Functional Water-Based Acrylic Paints for Exterior Walls (고기능성 외벽용 수성 아크릴계 도료의 균열 대응성 및 방수 특성 평가 연구)

  • Kim, Yong-Ro;Ko, Hyo-Jin;Park, Jin-Sang;Kim, Dong-Bum;Lee, Sang-Wook
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.593-604
    • /
    • 2021
  • In this study, a comparative test was conducted on a specially developed elastic waterproof paint and general water-based paint for the purpose of responding to cracks occurring on the outer wall of concrete structures and improving watertightness. Through the comparative experiment, it was confirmed that the watertightness could be improved by securing the crack shielding property, and it was also confirmed that about 10 times more crack responsiveness was secured compared to general water-based paint. In addition, it was confirmed that the adhesion performance of at least 1.3MPa and resistance to a water permeation pressure of 0.1MPa were possible, confirming that stability was secured from a waterproofing perspective.

Study on application case of reinforce building shallow foundation for soil stabilized materials using circulating resources (순환자원 활용 지반안정재의 건축물 얕은기초 보강 적용사례 연구)

  • Song, Sang-Huwon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.457-462
    • /
    • 2022
  • This study is about the case applied of a shallow foundation reinforcement method for a low/mid-rise building where a relatively small load is applied by using a soil stabilized material that utilizes recycled resources. First, laboratory mixing test was conducted for four mixing ratios in order to derive the optimal mixing ratio in the field. Using the derived optimal mixing ratio, it was applied as a shallow foundation for the building in the field. The field application method used a simple process of compaction by the soil mixedure with the original soil and the soil stabilized material in the field. After field application, a plate bearing test was performed on one original ground and two improved ground to confirm the allowable bearing capacity. As a result of checking the bearing capacity, it was found that sufficient bearing capacity was exhibited.Therefore, it was confirmed that it can be used as a shallow foundation for the building.

Shaking table test of wooden building models for structural identification

  • Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this paper, it is aimed to present a comparative study about the structural behavior of tall buildings consisting of different type of materials such as concrete, steel or timber using finite element analyses and experimental measurements on shaking table. For this purpose, two 1/60 scaled 28 and 30-stories wooden building models with $40{\times}40cm$ and $35{\times}35cm$ ground/floor area and 1.45 m-1.55 m total height are built in laboratory condition. Considering the frequency range, mode shapes, maximum displacements and relative story drifts for structural models as well as acceleration, displacement and weight limits for shaking table, to obtain the typical building response as soon as possible, balsa is selected as a material property, and additional masses are bonded to some floors. Finite element models of the building models are constituted in SAP2000 program. According to the main purposes of earthquake resistant design, three different earthquake records are used to simulate the weak, medium and strong ground motions. The displacement and acceleration time-histories are obtained for all earthquake records at the top of building models. To validate the numerical results, shaking table tests are performed. The selected earthquake records are applied to first mode (lateral) direction, and the responses are recorded by sensitive accelerometers. Comparisons between the numerical and experimental results show that shaking table tests are enough to identify the structural response of wooden buildings. Considering 20%, 10% and 5% damping rations, differences are obtained within the range 4.03-26.16%, 3.91-65.51% and 6.31-66.49% for acceleration, velocity and displacements in Model-1, respectively. Also, these differences are obtained as 0.49-31.15%, 6.03-6.66% and 16.97-66.41% for Model-2, respectively. It is thought that these differences are caused by anisotropic structural characteristic of the material due to changes in directions parallel and perpendicular to fibers, and should be minimized using the model updating procedure.

Recent Research Trends for Green Building Thermal Insulation Materials (친환경 건축물 단열재 최근 연구 동향)

  • Park, Jong-Moon;Kim, Dong-Hwan;Suh, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.14-21
    • /
    • 2012
  • The pros and cons of green building thermal insulation materials and systems have been reviewed from traditional thermal insulation materials such as mineral wool and polyurethane to new thermal insulation materials like VIP and aerogel and future insulating VIM and DIM. VIPs and aerogels with very low thermal conductivity can use for green buildings to significantly increase residential area by reducing energy consumption. Aerogels can be produced as not only opaque and but also translucent forms, thus enabling a wide range of possible building application. For building applications, there are many properties to consider like building site adaptability and mechanical strength, fire protection, cost and environmental impact.