• Title/Summary/Keyword: Building Life Cycle

Search Result 530, Processing Time 0.022 seconds

An Assessment of the Energy Consumption & CO2 Emission during the Construction Stage of Government Building using the Input-Output Analysis (산업연관분석법을 통한 공공청사 신축공사단계의 에너지 소비량 및 CO2 발생량 평가)

  • Choi, Young-Hun;Lee, Sang-Beom;Song, Ho-San
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.149-150
    • /
    • 2011
  • Recently, Goverment's Energy-saving policy in Korea as 'Green Growth' is very remarkable effort. By intensive poliicies, the private is encouraged to participate in policy. Especially, it is very important in the field of architecture and we have to work for construction of law system. However, these efforts of the government buildings for energy efficiency in use stage is as mandatory system that may occur in the construction phase and the enviromental impact of greenhouse gas reductions is not affected. For this reason, Assess the amount of the energy consumption and CO2 emissioont of Government Buildings in 2010 ordered by PPS(Public Procurement Service) in the construction phase and suggest to recognize the need for legal restrictions.

  • PDF

Breakdown Structures for Physical Asset Management in Built Environment (건설 산업의 시설물 자산관리를 위한 분류체계 역량)

  • Gebremichael, Dagem Derese;Moon, Kyeongpil;Lee, Yunsub;Jung, Youngsoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.305-306
    • /
    • 2021
  • Breakdown structure (BS) is a tool used to allocate information packages for various management functions and drive computerized information systems. Although several BS exists, work breakdown structures (WBS) and cost breakdown structures (CBS) are the most widely studied and used in previous literature. Nevertheless, heterogeneity of BS and respective management capabilities in current practices are not adequately addressed. In this context, this paper compared the management capabilities of various BS in both building and plant industries through systematic literature. Management requirements and applications scope, in terms of life cycle and stakeholder, were analyzed, respectively. Finally, finding and lesson-learned are outlined.

  • PDF

Exploring a BIM-based approach of project management

  • MA, Xiaozhi;XIONG, Feng;DONG, Na
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.241-244
    • /
    • 2015
  • Within the building industry, building information modelling has been widely applied among different organizations, disciplines and project phases. In order to achieve coordination and synergy collaborative effort, it demands organized information flow and communication for effective implementation of project management through the construction process. Although many BIM researches provides solutions for project management, few efforts have involved the whole life-cycle process of project. In this article, BIM-based project management relying on a series of applications of BIM technology was introduced by coupling management requirement of a project with BIM. Through adopting BIM to the life-cycle management of the project and incorporating BIM applications to project management practice, we have developed a BIM-based project management approach that specialize in integrated BIM chain and interface-supporting system. At the end, the developing process of BIM-based project management approach is concluded.

  • PDF

An Improvement Scheme of Process Quality in The Korean Building Projects (건축프로젝트에 있어서 프로세스 질 관리의 개선에 관한연구)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.51-57
    • /
    • 2006
  • The object of this study is to examine the managerial characteristics of the Korean building projects. The study in this paperproposes to investigate the factors that affect process quality not only in the construction phase but also in all three phases (design, construction, and operation) of the whole life cycle of a building project. A questionnaire survey is conducted to investigate the differences in the perceptions of graduate students, professors, designers and practitioners with regard to process quality in building projects. Analyzing these factors helps in revising and improving the Korean existing quality control system and programs. The findings indicate that cooperation of designer's professionals, level of management leadership in promoting quality, ability to operate the facility within design limits are important factors. Theparticipation percentage of "quality" treated in any course/seminar shows only 45%. It is recommended that college programs include courses that treat the administrative aspects involved in the building project and that continuing education programs rover quality training.

  • PDF

Towards Instant Availability and Full Life Cycle Resilience in Vertical Cities: Automated Deployment and Transformation of High-Rise Buildings to Mitigate Social Challenges

  • Thomas Bock;Rongbo Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.75-86
    • /
    • 2022
  • High-rise buildings often can accommodate the population of small horizontal cities. The investment in high-rise buildings is considerable and therefore a rapid return on investment is necessary. The immediate availability of high-rise buildings can be achieved by automated prefabrication of highly finished modules and their instant on-site assembly by robotic and automated construction sites. A high-rise building as a vertical city can be considered as a sophisticated organism that can constantly change throughout its lifecycle in response to economic growth, demographic change, and environmental pressures. To date, many new urban high-rise developments claim to be "vertical cities", yet few represent this important characteristic. This article analyzed the technological readiness and innovations in the field of construction automation and robotics including single-task construction robots, automated on-site construction factories, and ambient assisted living. These technological advances enable the realization of future vertical cities that are able to continuously grow and transform in terms of form and function. Finally, the article proposes a visionary archetype of vertical city in the name of "dynamic vertical urbanism" that is easy to expand vertically and horizontally in order to achieve instant availability and full life cycle resilience thanks to advanced building technologies.

Bim-based Life Cycle Assessment of Embodied Energy and Environmental Impacts of High-rise Buildings: A Literature Review

  • Lijian Ma
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.163-168
    • /
    • 2023
  • Today 55 percent of the population in the world lives in urban areas which is expected to increase to 68 percent by the year 2050. In the cities, high-rise buildings as symbols of the modern cityscape are dominating the skylines, but the data to demonstrate their embodied energy and environmental impacts are scarce, compared to low- or mid-rise buildings. Reducing the embodied energy and environmental impacts of buildings is critical as about 42 percent of primary energy use and 39 percent of the global greenhouse gas (GHG) emissions come from the building sector. However, it is an overlooked area in embodied energy and environmental impacts of high-rise buildings. Life cycle assessment (LCA) is a widely used tool to quantify the embodied energy and environmental impacts of the building sector. LCA combined with Building Information Modeling (BIM) can simplify data acquisition of the building as well as provide both tools with feedback. Several studies recognize that the integration of BIM and LCA can simplify data acquisition of the building as well as provide tools with feedback. This article provides an overview of literature on BIM-based of embodied energy and environmental impacts of high-rise buildings. It also compares with different LCA methodologies. Finally, major strategies to reduce embodied energy and environmental impacts of high-rise buildings, research limitations and trends in the field are covered.

Macro-level Methodology for Estimating Carbon Emissions, Energy Use, and Cost by Road Type and Road Life Cycle (도로 종류와 도로생애주기별 탄소배출량, 에너지소모량 및 비용에 대한 거시적 분석방법)

  • Hu, Hyejung;Baek, Jongdae
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.143-150
    • /
    • 2015
  • PURPOSES : The authors set out to estimate the related carbon emissions, energy use, and costs of the national freeways and highways in Korea. To achieve this goal, a macro-level methodology for estimating those amounts by road type, road structure type, and road life cycle was developed. METHODS : The carbon emissions, energy use, and costs associated with roads vary according to the road type, road structure type, and road life cycle. Therefore, in this study, the road type, road structure type, and road life cycle were classified into two or three categories based on criteria determined by the authors. The unit amounts of carbon emissions and energy use per unit road length by classification were estimated using data gathered from actual road samples. The unit amounts of cost per unit road length by classification were acquired from the standard cost values provided in the 2013 road business manual. The total carbon emissions, energy use, and cost of the national freeways and highways were calculated by multiplying the road length by the corresponding unit amounts. RESULTS: The total carbon emissions, energy use, and costs associated with the national freeways and highways in Korea were estimated by applying the estimated unit amounts and the developed method. CONCLUSIONS: The developed method can be employed in the road planning and design stage when decision makers need to consider the impact of road construction from an environmental and economic point of view.

A Study on the Service life of the Building Components in the Apartment Housing (공동주택 구성재의 내용년수 산정방법에 관한 연구)

  • Lee Kang-Hee;Chang Jung-Hee;Chae Chang-U
    • Journal of the Korean housing association
    • /
    • v.16 no.5
    • /
    • pp.67-74
    • /
    • 2005
  • The performance of building should be deteriorated with time while the building would maintain and manage the function and performance to get a living condition. For the efficient maintenance of the building, the repair cycle would be provided and applied during the service-life time. The service-life time of the building components would be needed to determine the repair time and the repair scope. The service-life time of the building components would be calculated with the 1st repair time and the recovery rate of the performance, considering the recovery rate after repaired. In this paper, the 1st repair time would be estimated with the normal probability distribution, choice probability and 3rd quadratic function. The recovery rate of the building components assumes various level according to the research target and utility area. The results of this study are as follows ; first, most of the components of the building work would range about 30 years in the service-life time and the components of the mechanical works range from 28 years to 37 years, those of the electrical works would be about 31 years.

Applications of bridge information modeling in bridges life cycle

  • Marzouk, Mohamed M.;Hisham, Mohamed;Al-Gahtani, Khalid
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.407-418
    • /
    • 2014
  • The purpose of this paper is to present an Integrated Life Cycle Bridge Information Modeling that can be used throughout different phases of the bridge life cycle including: design, construction, and operation and maintenance phases. Bridge Information Modeling (BrIM) has become an effective tool in bridge engineering and construction. It has been used in obtaining accurate shop drawings, cost estimation, and visualization. In this paper, BrIM is used as an integrated tool for bridges life cycle information modeling. In the design phase, BrIM model can be used in obtaining optimum construction methods and performing structural advanced analysis. During construction phase, the model selects the appropriate locations for mobile cranes, monitors the status of precast components, and controls documents. Whereas, it acts as a tool for bridge management system in operation and maintenance phase. The paper provides a detailed description for each use of BrIM model in design, construction, and operation and maintenance phases of bridges. It is proven that BrIM is an effective tool for bridge management systems throughout their life phases.

A Study on the Extraction of Assessment Items of the Sustainability in the Multifamily Housing (공동주택 지속가능성 평가항목 선정에 관한 연구)

  • 이강희;황은경
    • Journal of the Korean housing association
    • /
    • v.14 no.6
    • /
    • pp.69-77
    • /
    • 2003
  • The environmental problems aren't only restricted in single area or country, but also related in all around the world. Various approaches have been tried to protect and utilize properly the environment. Especially, building area has been attempted to provide the model which could explain the degree of environmental influence and technology development criteria to lessen the environmental impact in building life cycle. The environmental impact in the building life cycle can be overally explained with sustainability. Sustainability can be utilized to establish the target level of building to environmental influence. This paper aimed at extracting items to evaluate the building sustainability, divided into social, economic and environmental aspects. First, 93-items is extracted from 3 areas through existing literature review. Second, the 93-items would be controlled and reviewed into 21 items, which are five social aspect items, two economic aspect items and twelve environmental items, because 93 items can not properly be applied and evaluated. And, it provided the model to combine the extracted items of each area. In social aspect, the outdoor noise is more affect than any other items. In environmental aspect, the item of surface-to-volume is more affect than any other items.