• Title/Summary/Keyword: Building Impact Analysis

Search Result 671, Processing Time 0.027 seconds

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Load Variation Characteristics about Rope Length of Large Soft Body of Lightweight Wall Impact Resistance test (건식 경량벽체의 내충격성 시험용 연질 충격체의 줄 길이에 따른 하중변동 특성)

  • Kim, Ki Jun;Song, Jung Hyeon;An, Hong Jin;Shin, Yun Ho;Ji, Suk Won;Choi, Soo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.182-183
    • /
    • 2014
  • In case of large soft body impact test at the construction site, the test conditions are different from conditions at the laboratory, and the length of rope to hold the impact specimen must be changed. In a previous study, the fact that the size of impact load is varied by the length of rope on the large soft body impact specimen was confirmed. In this study, the length of rope and fall height were set as independent variables to conduct the load analysis test. It was determined that the load fluctuation was occurred depending on the length of rope under the fall height over 100 mm, and it is concluded that the additional setup of fall height to modify the actual impact load size is required when the length of rope is below 2.5 m. In this study, the modified formula to put equal size of impact load regardless of the length of rope was extracted through the experiment.

  • PDF

Noise and Vibration Characteristics of Floor Impact in a Test Building (표준실험동에서의 소음.진동 특성)

  • Jeong, Young;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.92-95
    • /
    • 2005
  • In this study, Heavy-weight floor impact sound and vibration in concrete structures with different slab thickness have been measured in a test building. It was found that natural frequency increased according to increases of slab thickness, and acceleration level decreases. Results also show that the measurements in the 210 and 240mm slab structures are complied with the result from finite element analysis but the In and 180mm slab structures are not because the structures are constrained to the ground. Therefore, in modelling process the condition of sub-structures should be examined in relation to the boundary conditions.

  • PDF

Real-time Impact Evaluation of a Capacity-Building Health Project in Lao PDR

  • LEE, KYE WOO;KIM, TAEJONG
    • KDI Journal of Economic Policy
    • /
    • v.37 no.4
    • /
    • pp.75-88
    • /
    • 2015
  • This study presents a real-time impact evaluation of a human capacity-building health project in Laos, financed by a Korean aid agency and executed jointly by Laotian and Korean higher educational agencies. The project aims to improve the health status of Laotians by enhancing practicing doctors' clinical performance capacity, to be attained by advancing academic achievement at the University of Health Sciences (UHS) in Laos. Therefore, this real-time impact evaluation adopted the difference-in-differences regression analysis method, showing that the project improved the academic achievement of the UHS students who were taught by the project fellowship awardees more, compared to the UHS students who were taught by non-fellowship faculty members. It remains to be evaluated whether these UHS students taught by the project fellowship recipients would also perform better clinically in public hospitals in the future.

  • PDF

Impact of Destination Image and Satisfaction on Tourist Loyalty: Mountain Destinations in Thanh Hoa Province, Vietnam

  • LE, Hoang Ba Huyen;LE, Thi Binh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.4
    • /
    • pp.185-195
    • /
    • 2020
  • The study aims to assess the impact of destination image, satisfaction and loyalty of tourists at mountain destinations in Thanh Hoa province, Vietnam. The study involves questionnaire surveys and multivariate data analysis methods (Cronbach Alpha test, EFA, CFA, SEM). Research results from 500 tourists in the mountain destinations of Thanh Hoa province demonstrate that all factors have imposed a positive impact on tourist satisfaction, specifically: The most influential factor is Natural features, followed by Human factors while the least influential factor is Infrastructure; On the other hand, research results also demonstrate that satisfaction has a substantial impact on tourist loyalty. Based on the research results, we also proposed some key solutions to enhance the destination image, thereby contributing to increased satisfaction and loyalty of tourists, including: (i) Promoting Natural Tourism Resources. (ii) Raising Awareness of Environmental Protection. (iii) Building Local Cultural Identity. (iv) Building Exclusive Tourist Products. (5) Strengthening the Support of Local Authorities for Tourism Activities. (vi) Developing a Price Policy.

An Efficient Vibration Analysis of the Floors in Residential Building (주거용 건축물의 효율적인 바닥진동해석)

  • Kim, Tae-Ho;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.228-235
    • /
    • 2005
  • The floor impact sound insulations are installed frequently for reducing the floor impact sound into the floor slab of the residential buildings in recent years. Therefore the analytical FE model considering the insulations is needed for the sound and vibration analysis of the floor and it is necessary to use a refined finite element model for considering the large number of modes involving in the dynamic responses. So it is very difficult to use FE model because of the tiresome task for constructing the FE model, taking a lot of times for analysis and the impossibility of using the proportional damping. The efficient analysis and modeling method are proposed to the dynamic analysis for the floor with floor impact sound insulations in this study. The floor slabs and finished layers are modeled individually and the spring elements that mean floor impact sound insulations use to connect two parts. The dynamic analysis by the $Newmark-{\beta}$ method is performed to solve the non-proportional damping problem due to the damping coefficient of insulations .

  • PDF

A Study on Vibration Analysis for the Slab of Apartment Building (아파트 슬래브의 진동평가에 관한 연구)

  • Park Kang-Geun;Kim Yong-Tae;Choi Young-Wha
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.333-340
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in apartment building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of apartment building.

  • PDF

BIM and Thermographic Sensing: Reflecting the As-is Building Condition in Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.16-22
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

Effect of seismic pounding on buildings isolated by triple friction pendulum bearing

  • Amiri, Gholamreza Ghodrati;Shakouri, Ayoub;Veismoradi, Sajad;Namiranian, Pejman
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • The current paper investigates the effect of the seismic pounding of neighboring buildings on the response of structures isolated by Triple Friction Pendulum Bearing (TFPB). To this end, a symmetric three-dimensional single story building is modeled for analysis with two specified levels of top deck and base deck, to capture the seismic response of the base isolators and building's roof. Linear elastic springs with different level of gaps are employed to calculate the impact between the buildings. Nonlinear Dynamic Time History Analyses (NDTHA) are conducted for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are assumed for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift and top deck acceleration of the superstructure. The results also indicate the profound effect of the stiffness of the adjacent buildings on the value of the impact they impose to the superstructure. Also, in situations of potential pounding, the increment of the fundamental period of the TFPB base isolator could intensify the impact force up to nearly five-fold.

GIS Application in Environmental Impact Assessment : Suitability Analysis and Odor Impact Assessment of Landfill Site (환경영향평가에서 GIS 활용에 관한 연구 : 폐기물매립지 적지분석과 악취영향평가)

  • Kim, Myung-Jin;Han, Eui-Jung;Lee, Jae-Woon;Jeong, Dong-Hwan;Seo, Chang-Wan
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Environmental Impact Assessment(EIA) in Korea has developed as a tool for environmental conservation and decision making since Environmental Impact Statement(EIS) preparation in 1981. For effective implementation of it, we do system development and method enhancement continuously. The recently introduced GIS (Geographic Information System) can integrate geographic and attribute data, which will be applied to scoping, assessment, and alternative assessment, etc. in EIA. This study has three major components. First, it explains building of EIA factors of natural environment, living environment, and socio-economic environment of the study area defined in EIS preparation regulation. Second, the study presents applications of assessment method concerning suitability analysis of landfill site using GIS. Finally, it shows integration of GIS and odor impact assessment. Based on these analysis, the study makes some recommendations and conclusions.

  • PDF