• 제목/요약/키워드: Building Envelope Performance

검색결과 120건 처리시간 0.024초

기존 오피스건물 에너지성능지표에 따른 설계기법 연구 (A Study on the Design Technique for Energy Performance Indicators of Existing Office Buildings)

  • 정형태;이유나;김인수;안종욱
    • 에너지공학
    • /
    • 제27권3호
    • /
    • pp.28-35
    • /
    • 2018
  • 세계 각국에서는 환경오염이나 에너지절감을 위한 방안으로 건축물에 대한 가이드라인과 제도적 지원이 활성화되고 있다. 우리나라에서도 2013.09.01. 개정된 "건축물의 에너지절약 설계기준"에 따라 기준들이 마련되고 신축 건축물에 대한 제로에너지빌딩화가 권장사항에서 의무화과정으로 가고 있다. 그럼에도 불구하고 소형건물에 대한 정부의 구속력은 미비한 실정이다. 이에 최근에 시공한 오피스건물(외단열기법 적용)에 대해 에너지 절감효과를 분석하였고 추가적으로 에너지 절감을 위한 이중외피기법을 제안하였다.

Interior Partitioned Layout and Daylighting Energy Performance in Office Buildings

  • Kim, Gon
    • Architectural research
    • /
    • 제1권1호
    • /
    • pp.31-40
    • /
    • 1999
  • In this age of "Information", many people consider it a deterrent to information flow to provide a hierarchy with private rooms in a modern office layout. There are others, however, who insist that visual and acoustical privacy are more important than any other design factor in achieving higher productivity. The debate may never end, but the partitioned open plan, which is a new form of the vast open plan, has merits of each concept - open and closed layout. Consequently, office design has dramatically shifted to partitioned open planning, with shorter, temporary walls or partitions, originally intended for increasing privacy and diminishing hierarchy, yet still keeping flexibility in spatial organization. The introduction of low-level partitioned spaces in an office layout, however, produces a complicated lighting design problem. Obviously, accurately predicted daylighting performance data are needed not only for daylighting design but for artificial lighting system design. Scale models of 12 sets of unit partitioned spaces are constructed and extensive scale model measurements of both daylight and reflected sunlight have been performed within an artificial sky simulator. The prototype-building interior is modeled with different partition configurations, each of which is modeled using the different envelope geometry and exterior configurations, and then the variations in interior light levels are estimated. The result indicates that partitioned spaces employed in an open plan of modern offices still offer a large potential for daylighting and energy saving as well. Much of the savings may derive from the cumulative effect of reflected sunlight. Optimal design for building envelope geometry and exterior configuration promises additional savings.

  • PDF

기존 학교 건물의 외피 성능 개선 방안에 관한 연구 (The Improvement of Building Envelope Performance in Existing School Building)

  • 방아영;박세현;김진희;김용재;김준태
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석 (The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window)

  • 배민정;강재식;최경석;최현중
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

건축물의 창틀과 벽체 사이 열교 차단을 위한 단열공법 개발 (Development on Thermal Bridge Barrier Between Window Frame and Wall)

  • 박철용;김웅회;이상희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.10-11
    • /
    • 2018
  • Internal Insulation system is applied to the most apartment building in Korea. However due to the importance of building energy enhanced the interest of the exernal insulation system. The extermal insulation system has better thermal performance because the thermal bridge through the structure are rarely formed. But the thermal bridge around the window decrease the thermal performance of the envelope system. Therefore the technology for reducing the thermal bridge around window improves energy efficiency of the building. In order to this it is necessary to minimize the thermal bridge around window of building. In this study it is aimed to minimize the thermal bridge around the window of building. It was confirmed that the use of thermal bridge barrier imporved the heat transfer rate by 64% or more and the condensation reduction phenomenon by 42% or more compared with the exist technology. These thermal bridge barrier will be used as the main technology to improve the energy efficiency of building.

  • PDF

이중외피 창호특성에 따른 계절별 실내 주광환경 평가 (Evaluation of Seasonal Daylighting Performance according to Window Compositions of Double Skin Facades)

  • 임태섭;강승모
    • 한국실내디자인학회논문집
    • /
    • 제24권4호
    • /
    • pp.91-98
    • /
    • 2015
  • Double skin façade is known that several features affected the building energy and daylighting performance. That is why the envelope is able to consist of all architectural materials such as glass, aluminum, wood and insulation for vision of residents and workers in buildings. Its specifications is very diverse according to the building designers and building owners. In recent times, visual environment became a major focus and resulted in the development of cutting edge engineering of diverse glazing systems and shading devices by growing interests of friendly environment. Thus this research has evaluated the fluctuations of interior lighting and atmospheric conditions based on double skin facade systems. Especially in terms of daylighting environment as dependent on solar variations, this research provides quantitative analysis of interior lighting conditions and how it affects the living conditions as well as improve the design of interior spaces.

A "Fabric-First" Approach to Sustainable Tall Building Design

  • Oldfield, Philip
    • 국제초고층학회논문집
    • /
    • 제6권2호
    • /
    • pp.177-185
    • /
    • 2017
  • This research suggests the most effective way for improving energy efficiency in tall buildings is a "fabric-first" approach. This involves optimizing the performance of the building form and envelope as a first priority, with additional technologies a secondary consideration. The paper explores a specific fabric-first energy standard known as "Passivhaus". Buildings that meet this standard typically use 75% less heating and cooling. The results show tall buildings have an intrinsic advantage in achieving Passivhaus performance, as compared to low-rise buildings, due to their compact form, minimizing heat loss. This means high-rises can meet Passivhaus energy standards with double-glazing and moderate levels of insulation, as compared to other typologies where triple-glazing and super-insulation are commonplace. However, the author also suggests that designers need to develop strategies to minimize overheating in Passivhaus high-rises, and reduce the quantity of glazing typical in high-rise residential buildings, to improve their energy efficiency.

적외선 열화상을 이용한 공동주택 단열성능 평가 : TDR(온도차비율)을 중심으로 (Thermal Performance Evaluation of Apartment Housing Using Infra-red Camera)

  • 최경석;손장열
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.404-412
    • /
    • 2010
  • The purpose of this study is to accomplished an in-site evaluation method for existing building insulation status using Infra-red camera and to consider improvement performance to prevent condensation and draw the optimum insulation design method for building using simulation tool. The research contents of this study are to evaluate validity and suitability of building insulation defect survey using Infra-red camera for apartment housing with temperature and heat flow pattern analyze method. Based on this research, the three corners, weak part in condensation, were selected in apartment building and conducted simulation by three-dimensional steady state. From the results, it is required to strengthen insulation design, and it is founded that existing insulation system typically applied to most Korean apartment housings have serious insulation defect that insulation is disconnected by structural components at the joints of wall-slab and wall-wall in envelope. Thus, it is considerate to need a concrete technology improvement.

전동 블라인드 내장형 창호시스템 적용에 따른 공동주택 에너지 성능평가 연구 (Energy Performance Evaluation of Apartment Building in Case of Applying a Blind Integrated Window System)

  • 최경석;손장열
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.429-435
    • /
    • 2010
  • Although recently revised building code requires 15~20% increased thermal insulation performance for window systems, since the code is focusing on winter heat loss, it is not satisfactory to contribute on reducing rapidly rising cooling load in summer. Window systems have great impact on building heat gain and loss. Therefore technological development for window system specialized in shading solar gain in summer is an urgent matter. This study evaluates the performance of sun shading and thermal insulation for blind integrated window system. Also, computer simulation evaluates the effect of heating and cooling energy consumption reduction for an individual unit(floor area of $85m^2$) of a multi-family housing. Physibel Voltra, a heat transfer analysis software, was used to analyse the effect of energy consumption reduction, and the energy load was converted to the cost to compare the actual effect of economical benefit.

차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구 (A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building)

  • 박세현;강준구;방아영;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제35권2호
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.