• 제목/요약/키워드: Building Envelope Performance

검색결과 120건 처리시간 0.023초

A Study of Zero Energy Building Verification with Measuring and Model-based Simulation in Exhibition Building

  • Ha, Ju-wan;Park, Kyung-soon;Kim, Hwan-yong;Song, Young-hak
    • Architectural research
    • /
    • 제20권3호
    • /
    • pp.93-102
    • /
    • 2018
  • With the change in Earth's ecosystems due to climate change, a number of studies on zero energy buildings have been conducted globally, due to the depletion of energy and resources. However, most studies have concentrated on residential and office buildings and the performance predictions were made only in the design phase. This study verifies the zero-energy performance in the operational phase by acquiring and analyzing data after the completion of an exhibition building. This building was a retention building, in which a renewable energy system using a passive house building envelope, solar photovoltaic power generation panels, as well as fuel cells were adopted to minimize the maintenance cost for future energy-zero operations. In addition, the energy performance of the building was predicted through prior simulations, and this was compared with actual measured values to evaluate the energy performance of the actual operational records quantitatively. The energy independence rate during the measurement period of the target building was 123% and the carbon reduction due to the energy production on the site was 408.07 tons. The carbon reduction exceeded the carbon emission (331.5 tons), which verified the carbon zero and zero-energy performances.

양면형 BIPV 시스템의 커튼월 적용에 따른 온도 및 발전특성 분석 (Analysis of Temperature and Power Generation Characteristics of Bifacial BIPV System Applied into Curtain Wall)

  • 강준구;김용재;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제35권4호
    • /
    • pp.57-66
    • /
    • 2015
  • BIPV system not only produces electricity at building, but also acts as a material for building envelope. Thus, it can increase the economical efficiency of PV system by saving the cost for building materials. Bifacial solar cell can convert solar energy to electrical energy from both sides of the cell. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial solar cells. Therefore, many of the module manufacturers can easily use the bifacial solar cells without changing their manufacturing equipments. Moreover, bifacial PV system has much potential in building application by utilizing glass-to-glass structure of PV module. However, the electrical generation of the bifacial PV module depends on the characteristics of the building surface which faces the module, as well as outdoor environment. Therefore, in order to apply the bifacial PV module to building envelope as BIPV system, its power generation characteristics are carefully evaluated. For this purpose this study focused on the electrical performance of the bifacial BIPV system through the comparative outdoor experiments. As a result, the power generation performance of the bifacial BIPV system was improved by up to 21% compared to that of the monofacial BIPV system. Therefore, it is claimed that the bifacial BIPV system can replace the conventional BIPV system to improve the PV power generation in buildings.

학교건물의 에너지 성능개선에 관한 연구 (A Study on the Improvement of Energy Performance in School Buildings)

  • 박진철
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.54-61
    • /
    • 2004
  • The purpose of this study is to improve of energy performance in school buildings. Many building renovations have mainly focused on commercial buildings and houses, but school buildings have no attention in this field although there are many buildings that show degraded energy performance and there are many old fashioned buildings which need renovation. This study was carried out through the survey, field study, energy simulation and life cycle cost analysis. The results of this study can be summarized as follows: In model building, large amount of heat were lost at the building envelope, such as non-insulated skins, window-sills and window-frame joints. According to the simulation result, about 15% of heating energy is saved by the insulating works compared to pre-renovation condition. Also, LCC analysis revealed to be more effective to select a exteria wall insulation such as a dryvit system.

창덕궁 낙선재 외피 열류량 실측을 통한 열관류율 산정 및 열 성능 해석 (Overall Heat Transfer Coefficients and Thermal Performance Evaluation through Heat Flux Measurement at Nakseonjae in Changdeokgung)

  • 김민휘;김진효;권오현;한욱;정재원
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.190-195
    • /
    • 2008
  • The objective of this research is to determine overall heat transfer coefficients (K-value) of exterior wall, floor, and roof of Nakseonjae, a Korean traditional residence via field measurement of transient heat flow and temperature difference across each envelope component. Heat flow sensors and T-type thermocouple were attached on the internal and the external surface of each building component, and real-time measurement data were collected for the three consecutive summer days. The K-values determined in this research showed good agreement with other results from open literature. Peak and annual thermal loads of the traditional residence estimated by a commercial energy simulation program were compared with those for a current apartment house. The traditional house showed lower annual cooling load than that of the current building. It may caused by the fact that the traditional building has less air-tight envelopes and no fenestration passing direct solar radiation into the space.

  • PDF

Analysis of Energy Performance and Green Strategies in the Foreign High-Performance Buildings

  • Park, Doo-Yong;Kim, Chul-Ho;Lee, Seung-Eon;Yu, Ki-Hyung;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.21-28
    • /
    • 2015
  • Purpose: In this study, we analyzed the energy performance levels and high-performance technology trends through the case studies of foreign high-performance buildings. Method: Buildings built within 10 years were selected for the analysis of recent trends. we analyzed the buildings of U.S.A, Germany and Japan using LEED certified buildings, Passive House certified buildings and CASBEE certified buildings database for the case study of foreign high-performance buildings. A total of 20 high-performance buildings including 14 cases in U.S.A, 4 cases in Germany and 4 cases in Japan were selected. Annual energy consumption levels for 20 high-performance buildings were collected with the actual energy consumption data or data from simulation programs officially recognized by DOE. Annual energy consumption were compared with the energy performance standard of the office buildings in the CBECS database, ASHRAE Standard 90.1-2004 and Building Energy Efficiency Rating System in Korea. Result: The order of the green strategies applied in the main categories are Renewable Energy(63%), Indoor Environment Control(51%), Envelope Improvement(44%) and HVAC System & Control(28%). Specified strategies most widely used in the sub-categories are high-performance Insulation (70%), High Efficiency Heating, Cooling Source Equipment(85%), Photovoltaic&Solar Thermal(80%) and Daylighting(80%).

건축물 설계현황 분석을 통한 국내 비주거용 표준건물의 설정에 관한 연구 (A Study on the Reference Building based on the Building Design Trends for Non-residential Buildings)

  • 정영선;정해권;장희경;유기형
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.1-11
    • /
    • 2014
  • The Korean government plans to introduce the building energy performance standard which regulates the annual energy consumption of buildings. This paper aimed to set up the reference building from database based on the building design trends for non-residential buildings. We surveyed the design data of 435 non-residential buildings which were granted building permission from 2007 to 2011. And we conducted estimation on the heating & cooling load and the energy consumption of the reference building using ECO2 program. From results, the reference building of non-residential buildings was office building which had a total 7 floors and $20,838m^2$ gross floor area. And it suggests the design reference data of building envelope, HAVC, heat source equipment and lighting system for the reference building. The total annual energy use of the reference building was $151.9kWh/m^2yr$.

건물에너지효율등급향상을 위한 고효율 건물외피 성능 연구 (Study on High Performance Building Envelope for raising Building Energy Rating)

  • 현종훈;홍성희;박효순;최무혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.801-806
    • /
    • 2008
  • The best plan is that the insulation performance should be improved because the insulation and airtight of building envelopes have an effect on the energy consumption basically. New insulation materials, which have the high performance and are above insulation standard, have been developed steadily. Because there are not studies on the building energy rating system and economic evaluation considering new insulation materials, these matters should be studied. In result alternatives, which applied 6 high performance material each, influence, reduce the annual heating energy and raise the building energy rating. Applying the vacuum insulation material(Case1,2) and vacuum or triple glazing can retrieves the investment with $120 and $$140{\sim}150$ per barrel each.

  • PDF

가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구 (Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test)

  • 김진희;김상명;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제40권2호
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

창호의 단열성능에 따른 공동주택 냉난방 부하량 변화 (The Change of Heating and Cooling Load according to the Thermal Insulation Performance of Window for an Apartment House)

  • 송수빈;김영탁;윤성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.853-856
    • /
    • 2008
  • Windows have an great effect on annual building load because windows are the weakest parts of building envelope thermally. To reduce the consumption of building energy, the thermal performance of window has to be improved in first place. Therefore this research aims to make a quantitative analysis of the heating and cooling load according to the window thermal performance using the heat load simulation program. As a result of the simulation, annual heat load is down 38% according to the decrease of U-value of window, 1.00 W/$m^2K$. and annual heat load is up 10% according to the decrease of shading coefficient, 0.20. The annual load of the window with Low-E glass is 15% lower than the window with pair glass.

  • PDF

창의 종류 및 차폐계수 변화와 건물 향에 따른 단독주택의 에너지요구량 분석 (A study on analysis of energy consumption of Detached house by U-value and SCs of windows and Building Orientation)

  • 정수희;박효순;이병연
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.96-103
    • /
    • 2012
  • Annual energy consumption in detached houses are affected mainly by thermal performance of envelope. In particular the performance of glasses are critical due to global wanning and climatic change. Therefore, this research analyzes annual consumption of cooling and heating energy with various combination of U-value, shading coefficient and building orientation. The simulation results shows that shading coefficient of glazing contributes to the changes of proportion of heating and cooling energy demand and the optimized shading coefficient for minimizing energy consumption varies with buildings orientation.