• Title/Summary/Keyword: Building Energy Load

Search Result 654, Processing Time 0.025 seconds

A Study on the Process of Energy Demand Prediction of Multi-Family Housing Complex in the Urban Planning Stage (공동주택단지의 개발계획단계 시 에너지 수요예측 프로세스에 관한 연구)

  • Mun, Sun-Hye;Huh, Jung-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.304-310
    • /
    • 2008
  • Currently energy use planning council system is mandatory especially for the urban development project planned on a specified scale or more. The goal of existing demand prediction was to calculate the maximum load by multiplying energy load per unit area by building size. The result of this method may be exaggerated and has a limit in the information of period load. The paper suggests a new forecasting process based on standard unit household in order to upgrade the limit in demand prediction method of multi-family housing complex. The new process was verified by comparing actual using amount of multi-family housing complex to forecasting value of energy use plan.

  • PDF

Analysis of reinforced concrete corbel beams using Strut and Tie models

  • Parol, Jafarali;Al-Qazweeni, Jamal;Salam, Safaa Abdul
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2018
  • Reinforced concrete corbel beams (span to depth ratio of a corbel is less than one) are designed with primary reinforcement bars to account for bending moment and with the secondary reinforcement placed parallel to the primary reinforcement (shear stirrups) to resist shear force. It is interesting to note that most of the available analytical procedures employ empirical formulas for the analysis of reinforced concrete corbels. In the present work, a generalized and a simple strut and tie models were employed for the analysis of reinforced corbel beams. The models were benchmarked against experimental results available in the literature. It was shown here that increase of shear stirrups increases the load carrying capacity of reinforced concrete corbel beams. The effect of horizontal load on the load carrying capacity of the corbel beams has also been examined in the present paper. It is observed from the strut and tie models that the resistance of the corbel beam subjected to combined horizontal and vertical load did not change with increase in shear stirrups if the failure of the corbel is limited by concrete crushing. In other words, the load carrying capacity was independent of the horizontal load when failure of the beam occurred due to concrete crushing.

A Study on Heating Load Analysis of Zero Energy Solar House Considering the Effective Transmittance of Window (창호의 유효투과율을 고려한 제로에너지 태양열 주택의 난방부하 분석에 관한 연구)

  • Son, Sun-Woo;Baek, Sang-Hun;Lee, Hyun-Soo;Baek, Nam-Choon;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.62-69
    • /
    • 2009
  • To reduce the building energy consumption, the major advanced nations are conducting actively many researches on so called a "self-sufficient building(or other words zero energy building)" which can support its required energy by itself. Given this background, KIER(Korea Institute of Energy Research) built full size test-bed of the zero energy solar house in early 2001, and has studied on the self-sufficient heating load up to now. We analyse the sensitivity between the heating load and the solar radiation gain according to the change the effective transmittance of windows. The authors classified 9 cases by solar transmittance of glass. The results demonstrate the solar radiation amount is 0.466 MWh from the eastern zone of Fl.,1(the first floor), 0.332 MWh from Fl.,2(the second floor), 1.194 MWh form the southern zone of F1., and 0.822 MWh from the southern zone of Fl.,2 on the case 1(each cases are classified by window types). On the case 9, the solar radiation amount is 3.127 MWh, 2.662 MWh, 8.799 MWh and 6.078 MWh from the same condition. For the Fl.,1, the amount of Heat Load that is saved per year ranged 10.5 to 48%, and the reduction was anywhere from 0.2 to 17.9% for Fl.,2.

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

A Software Development of Energy Consumption for HVAC System of Building (건물에너지 소비량 해석 소프트웨어 개발)

  • Kim B. H;Jo S. B;Kim J. P
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.19 no.2
    • /
    • pp.67-81
    • /
    • 1990
  • The objective of this is to develop a practical software package to calculate annual energy consumption of HVAC (Heating Ventilating, and Air Conditioning) System in a building. It can quickly estimate loads and energy consumption, and have a function of economic analysis through the estimation of operating cost. Techniques of save energy consumption used in a building are necessary from the stage of design process to operation. The single most significant task is on HVAC Systems. Their installation costs, and related operating costs have enormous influence upon initial and maintenance costs. HVAC designers and engineers now have a wide variety of software choices available, but only a few of them have been developed in this country and no source program has been disclosed. Neither load culculation nor estimation of energy consumption is systematically made by the domestic HVAC design firms. Even though computer improved over the years with a trend of large scale load calculation and system selection through simulaion, the utilization of software nowadays does not make good progress due to lack of working environment. Therefore, it is necessary to develop a practical software package with which load calculation can be made with ease and kind manner. This study concerns the development of a software package which makes it possible to design HVAC system and save energy consumption in operation. The algorithm used in this program is a Modified Bin Method widely known as a simplified energy analysis means.

  • PDF

Effects of Phase Change Material Floor Heating Systems using Direct Solar Gain on Cooling Load (직달일사를 이용한 잠열축열식 바닥난방 시스템이 냉방부하에 미치는 영향에 대한 검토)

  • Kim, Soo-Kyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • In this research, the effect of a heating system, which is powered by direct solar energy accumulated in phase change material (PCM) as heat storage material installed on the floor surface, on the cooling load was studied. Cooling load of a test building designed for this research was measured with fan coil unit and factors affecting it were also estimated. Experiments were performed with and without PCM installed on the building floor to understand the effect of the PCM on the cooling load. Additionally, to confirm the experiments results, the prediction calculation formula by average outside temperature and integrated solar radiation was composed using multivariate regression model. The results suggested that the heating system with PCM on the floor surface has the potential to shift electric power peak by radiating heat, stored during the daytime in it, at night, not increasing the total cooling load much.

Analysis of Building Energy by the Typical Meteorological Data (표준기상데이터(부산지역) 적용에 따른 건축물에너지 분석)

  • Park, So-Hee;Yoo, Ho-Chun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.202-207
    • /
    • 2008
  • Measures for coping with energy shortage are being sought all over the world. Following such a phenomenon, effort to use less energy in the design of buildings and equipment are being conducted. In particular, a program to evaluate the performance of a building comes into the spotlight. However. indispensable standard wether data to estimate the exact energy consumption of a building is currently unprepared. Thus, after appling standard weather data for four weather factors which were used in previous researches to Visual DOE 4.0, we compared it with the result of the existing data and evaluated them. For the monthly cooling and heating load of our target building, we used revised data for June, July, August, and September during which cooling load is applied. When not the existing data but the revised data was used, the research shows that an average of 14.9% increased in June, August, and September except for July. Also, in a case of heating load, the result by the revised data shows a reduction of an average of 11.9% from October to April during which heating load is applied. In particular, the heating loads of all months for which the revised data was used were more low than those of the existing data. In the maximum cooling and heating load according to load factors, the loads by residents and illumination for which the revised data was used were the same as those of the existing data, but the maximum cooling loads used by the two data have a difference in structures such as walls and roofs. Through the above results, the research cannot clearly grasp which weather data influences the cooling and heating load of a building. However, in the maximum loads by the change of weather data in four factors (dry-bulb temperature, web-bulb temperature, cloud amount, and wind speed) among 14 weather factors, the research shows that 5.95% in cooling load and 27.56% in heating load increased, and these results cannot be ignored. In order to make weather data for Performing energy performance evaluation for future buildings, the flow of weather data for the Present and past should be obviously grasped.

  • PDF

A Study on the Reduction of Building Energy Consumption and Generation of BIPV System According to the Increase of the Number of Floors in Office Building (사무소건물 층수 증가에 따른 BIPV 발전량과 건물에너지소비량 저감에 관한 연구)

  • Oh, Myung-Hwan;Yoon, Jong-Ho;Shin, Woo-Cheol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.36-41
    • /
    • 2011
  • BIPV system that can alternate building envelope by making materials of PV module should be considered in initial design step for applying PV system efficiently in office building. Mean while, area of the building skin also increases as the number of floors increases, but the valid area that can apply BIPV system in effect decreases relatively. Despite of this weak point, installing BIPV system is still being evaluated as the only measure left that can reduce electronic energy consumption in the building. Therefore, the impact on building energy consumption according to the increase of the number of floors when BIPV system is applied in the building was analyzed. And it will be used as basic information for application of BIPV in office building. Conomic about application of BIPV is interpreted to be secured within the 10 story high. Forover the 11 floors, the methods of increasing the contribution ratio produced by BIPV system through the optimization of install angle and increase in install area of south, high efficiency should be considered. The ways to reduce basic load by integrated design with another renewable energy besides BIPV should be found. Later, the study on the total building energy comsumption with PV generation according to the various type of the basic load and ratio of the width and depth will be performed based on this study.

  • PDF

Power conversion control for zero emission buildings (탄소제로 빌딩을 위한 전력변환 제어)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF

A study on the analytical method for calculating the inside air temperature transient and energy consumption load of the building using two different controllers (두개의 제어기를 사용한 건물 내부의 온도변화와 에너지소비량을 계산하기 위한 해석적 연구)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Four different buildings having various wall construction are analyzed for the effect of wall mass on the thermal performance and inside building air and wall temperature transient and also for calculating the energy consumption load. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equations is obtained using the Laplace transform method, Bromwich and modified Bromwich contour method. A simple dynamic model using steady state analysis as simplified methods is developed and results of energy consumption loads are compared with results obtained using the analytical solution. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from two different locations in Korea: Daegu having severe weather in summer and winter and Jeju having mild weather almost all year round. There is a significant wall mass effect on the thermal performance of a building in mild weather condition. Buildings of heavyweight construction with insulation show the highest comfort level in mild weather condition. A proportional controller provides the higher comfort level in comparison with buildings using on-off controller. The steady state analysis gives an accurate estimate of energy load for all types of construction. Finally, it appears that both mass and wall insulation are important factors in the thermal performance of buildings, but their relative merits should be decided in each building by a strict analysis of the building layout, weather conditions and site condition.