• Title/Summary/Keyword: Building Energy Efficiency

Search Result 736, Processing Time 0.038 seconds

A Study on the Efficient Energy & Manpower Management in Post Office Building : Focused on Introduction of Total Resource Group Management System (우정건축물(郵政建築物)의 효율적(效率的)인 에너지 및 인력(人力) 관리(管理) 방안(方案) - 통합 자원 군(群) 관리시스템의 도입을 중심으로 -)

  • Gang, Oh-Sik;Lee, Sang-Joong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.25-30
    • /
    • 2007
  • Most part of the energy consumption of MIC(Ministry of Information and Communication) is mainly due to operation/maintenance of the post office buildings. In this paper, the pattern of energy consumption & operating status in post office buildings in Korea is analyzed. The authors suggest integrated and grouped management of the dispersed post office buildings using internet, through which we can expect increased efficiency.

  • PDF

Implementation of Sensor Network Monitoring System with Energy Efficiency Constraints (에너지 효율 제약조건을 가진 센서 네트워크 모니터링 시스템 구현)

  • Lee, Ki-Wook;Seong, Chang-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.10-16
    • /
    • 2010
  • As the study of ubiquitous computing environment has been very active in recent years, the senor network technology is considered to be a core technology of it. This wireless sensor network is enabled to sense and gather data of interest from its surroundings by sensor nodes applied in physical space. Each sensor node structuring the sensor network is demanded to execute the required service using limited resources. This limited usage of resources requires the sensor node to energy-efficiently perform in building wireless sensor network, which enables to extend the entire network life. This study structures a system able to monitor changing environment data on a real-time basis using a computer remotely as it energy-efficiently gathers and sends environment data of specific areas.

Performance Analysis of Passive Solar Chamber System (자연형 태양 챔버 시스템의 성능 분석)

  • Jang, Hyang-In;Kim, Byung-Gu;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.57-65
    • /
    • 2011
  • This study proposes a Passive Solar Chamber System (PSCS) as a passive method for reduction of building energy consumption. Through numerical analysis, the study quantitatively analyzes system performance and aims to provide foundational data for system design. For this purpose, the study configures different system operation modes seasonally and also computes thermal and ventilation performance of the system in accordance with design factors(solar radiation, air channel height and distance). System and ventilation efficiency increases along with increase in solar radiation and air channel distance; however, as the air channel height increases, the efficiencies showed a tendency to decrease. Upon installation of PSCS, an average of $98.23W/m^2$ of heat flux was introduced in the daytime for the month of January in comparison to walls with no PSCS installed. For the month of August, natural ventilation of $56.68m^3/h$ was shown to be supplied to the room.

A Study on the Requisite Elements of LCCO2 Evaluation System at Planning Stage of Building (건축물 계획단계 LCCO2 평가시스템의 필요요소에 관한 연구)

  • Baek, Cheong-Hoon;Tae, Sung-Ho;Roh, Seung-Jun;Lee, Joo-Ho;Shin, Sung-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.31-41
    • /
    • 2011
  • The $LCCO_2$ evaluation programs previously developed in Korea involve limitations in establishing strategies of reducing environmental loads to optimal level in a way to put in materials directly after designing. Therefore, this study has the purpose to extract and propose elements required for the establishment of highly accurate system by counteracting swiftly in a method with high energy efficiency over cost at planning stage. To that end, existing $LCCO_2$ evaluation programs in Korea and abroad were compared and analyzed, and in the planning stage, GEM-21P and Carbon-navigator intended for the establishment of building energy performance improving strategy were selected as the evaluation program for survey. On such basis, after comparison and analysis between $LCCO_2$ calculating methods and system structures of the two programs, elements required for system establishment that can evaluate life-cycle environmental loads of building in planning stage were proposed.

Thermal Performance Evaluation of Junction Thermal Bridge according to Installation Position of Window

  • Lee, Soo-Man;Kim, Dong-Yun;Ahn, Jung-Hyuk;Eom, Jae-Yong;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose: "Building energy design standard" is used to limit the thermal transmittance of building in Korea. However, it only covers the insulation standard for each appropriate elements of a building, not the thermal performance of Junction thermal bridge of windows and doors installed in wall. Therefore in this study, we have evaluated the thermal performance of Junction thermal bridge depending on installation method and position of windows and provide it as design data. Method: We analyzed heat transfer of 4-Track sliding window and tilt & turn triple glazed window that are placed in the first class category on window energy efficiency rating using Window 7.4 and Therm 7.4. Result : First, linear thermal transmittance of 4-Track sliding window differs by 2.2 times or more depending of installation method and location. It is higher than the linear thermal transmittance, 0.01W/mK, proposed by Passivhaus. Second, linear thermal transmittance of Tilt & turn triple glazed window differs by 7.7 times or more depending of installation method and location. The average linear thermal transmittance was less than 0.01W /mK when windows were installed on the internal wall insulation by the fixed hardware attachment method. Third, the thermal losses of a window caused by a junction thermal bridge are inversely proportional to the window area and converge gradually as the area increased.

Design of MAC Protocol for Improving Energy Efficiency and Reducing Transmission Delay in EH-WSN (EH-WSN에서 에너지 효율 향상 및 전송지연 축소를 위한 MAC 프로토콜 설계)

  • Park, Seok Woo;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recent research on energy harvesting wireless sensor networks focuses on the development of techniques to solve the limited energy resource problem and to extend the whole network life efficiently. Energy harvesting technology can increase the lifetime of a network, but data transmission becomes unavailable when it harvests energy from radio frequency, resulting longer network delay with respect to the increased time in energy harvesting. Therefore, building energy harvesting wireless sensor network should consider the possible network delay as well as the network lifetime problem. In this paper, we propose a new MAC protocol that minimizes end-to-end network delay by adjusting the data transmission time for a packet based on estimating the energy for data transmission along with the amount of traffic flowing into the network and harvested energy. For this goal, it engineers an energy management mechanism that adjusts the sleep time of the network by measuring energy harvesting time. In addition, with simulation results it shows that the proposed MAC protocol improves the performance in terms of energy consumption and end-to-end delay, compared to the existing MAC protocols.

Physical Environment Change and Occupancy Evaluation on Green-Remodeled University Dormitory (그린리모델링 기숙사의 물리적환경 변화와 거주자평가)

  • Choi, Yoon-Jung;Lee, Ho-Yeon;Lee, Hyun-Jung;Kim, Won-bae
    • Journal of the Korean housing association
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • This study focuses on the university dormitory remodeled toward energy efficiency. The study has its purpose on deriving the aspects to be concerned for later green remodeling and enhancing the effects of green remodeling, by analyzing the changes of physical environment, changes of energy consumption amount, and needs of the residents. For this purpose, the study went through the review of project report from government office for green remodeling, field investigation of remodeling elements, and the occupancy evaluation by Focus Group Interview. FGI means interviewing small group of the residents who lived in the subjected dormitories both before and after the remodeling. As results, the elements of green remodeling in targeted dormitories were inner wall insulation, top-floor ceiling insulation, replacement of windows, installment of automatic entrance door and making transfer space connected the entrance door. As the parts of equipment system, EHP high-efficiency cooler, highly efficient radiator, upgraded LED lightings with covers, and automatic control system (only one building) were installed. Energy consumption was declined, and the satisfaction of residents was increased after the green remodeling. However, the aspects which were not improved or unsatisfying also have been detected. Therefore, the study states the suggestions each for the administrators, designers and planners, and residents to concern for enhancing the effects of green remodeling or construction of new dormitories.

A Study on Light-Shelf System using Location-Awareness Technology for Energy Saving in Residential Space (에너지 저감을 위한 주거공간 내 위치인식기술 적용 광선반 시스템 개발연구)

  • Gim, Sanghoon;Kim, Yongseong;Lee, Henagwoo;Seo, JangHoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.275-286
    • /
    • 2014
  • Light shelf is an efficient system that reduces the energy consumption by bringing the natural light down to the deep spaces inside of a building. However, the existing light shelves have limits in reducing energy usage, because the direction of the light flow is determined by the external environment such as the altitude of the sun and the azimuth. This current study presents a system that increases the efficiency of the light shelf by applying the Location-Awareness technology, in which the efficiency was verified through the performance evaluation. According to the examination of the technology for the Location-Awareness within residential space, 'Zigbee' type appears to be the most appropriate. The Location-Awareness technology operates the light shelf based on both the angle control axis and the light shelf angle control axis through the modularization of the reflector surface which is less affected by the external environment. The results of the performance evaluation showed that the movable light shelf that employs the Location-Awareness technology can reduce the energy consumption for lighting by 98.3% compared to the fixed light shelf and by 97.3% compared to the movable light shelf without Location-Awareness.

A study on the Energy resource in School Buildings with the Changes of Educational Facilities Standard (교육 시설기준 변화에 따른 학교건축물의 에너지원 변화에 관한 연구)

  • Kim, Tae-Woo;Lee, Kang-Guk;Hong, Won-Hwa
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Since the Korean War, Korea has experienced modernization. The population increase by baby booming has asked for more space for educational facilities. In such a situation, the purpose of educational facilities was to accommodate continuously increasing students, rather than seeking for quantitative demands. In addition, in accordance with social changes, educational shifts were required. After the revision of the seventh national curriculum in education in 1997, the school buildings became varied. The design of buildings in accordance with educational curriculum has been improved, but still lack of forming comfortable environment and considering energy efficiency in school buildings. For the improvement of educational environments, educational media such as TV and computers have been provided, and energy systems, including heating and cooling systems, has been continuously increased. As a result, it appeared that energy use in school buildings and facilities has been steadily increased and that the structure of energy consumption has been also changed, especially with regard to electricity use. Living in the 21st century, human beings face global environmental issues, such as global warming, geographical climate changes, and ozone destruction that are the consequences of fossil energy use. Therefore, even in industrial areas, considering a counterplan for low energy use is being paid attention. Starting with Kyoto Protocol in 1992, people try to decrease carbon dioxide and to develop alternative energies (i.e. natural energy); for example, solar energy, wind force, terrestrial heat, and water power. Advanced countries already set up a criterion for $CO_2$ decrease ranging from office buildings to residential houses and also propose alternatives for the $CO_2$ decrease. However, there is no such a plan for low energy use and $CO_2$ decrease in school facilities, and any research on the actual conditions was not accomplished. Thus, this study examines energy demand in classrooms that take up a large portion of energy demand in school building structure.

Effect of Slot Discharge-Angle Change on Exhaust Efficiency of Range Hood System with Air Curtain (에어커튼형 레인지후드의 슬롯 토출 각도 변화와 배기 효율)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.468-474
    • /
    • 2015
  • When oil is used for cooking in detached or apartment houses, large amounts of oil-mist, smoke, and particulate substances are generated and dispersed into the indoor-air environment. These pollutants diffuse into the surroundings and spread their odor while rising fast at a high temperature due to the heat energy from the gas range. Although the exhaust gas is discharged from the exhaust hood, which is installed on the top of a gas range to remove the diffuse pollutants, the exhaust conditions can vary greatly because they depend on the shape of the exhaust hood and the discharge rate. In this paper, the air that is required for the gas-exhaustion process is supplied by an air curtain that surrounds the kitchen hood, and the pollutant-capturing efficiency varies depending on the angle of the discharge grills; the pollutant-capturing efficiency was studied using a numerical-analysis method. The results indicate that the pollutant-capturing efficiency is not significantly changed by a change of the discharge-grill angle at a low air-discharge rate; however, at a high air-discharge rate, the efficiency value increases with an increase of the discharge-grill angle, whereby the best value occurs at 30 degrees and the efficiency decreases above this angle. Below 30 degrees, the effect of the discharge rate on the capturing efficiency is more than that of the discharge-grill angle.