• Title/Summary/Keyword: Building Energy Efficiency

Search Result 744, Processing Time 0.025 seconds

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

The New Structural Design Process of Supertall Buildings in China

  • Lianjin, Bao;Jianxing, Chen;Peng, Qian;Yongqinag, Huang;Jun, Tong;Dasui, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • By the end of 2014, the number of completed and under-construction supertall buildings above 250 meters in China reached 90 and 129, respectively. China has become one of the centers of supertall buildings in the world. Supertall buildings in China are getting taller, more slender, and more complex. The structural design of these buildings focuses on the efficiency of lateral resisting systems and the application of energy dissipation. Furthermore, the research, design, and construction of high-performance materials, pile foundations, and mega-members have made a lot of progress. Meanwhile, more and more challenges are presented, such as the improvement of structural system efficiency, the further understanding of failure models, the definition of design criteria, the application of high-performance materials, and construction monitoring. Thus, local structural engineers are playing a more important role in the design of supertall buildings.

Economic Analysis of Heat Pump System through Actual Operation (히트 펌프 냉난방 시스템의 실사용을 통한 경제성 분석)

  • Shin, Gyu-Won;Kim, Gil-Tae;Joo, Ho-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.921-926
    • /
    • 2006
  • The present study has been conducted economic analysis through actual operation of EHP and GHP which are installed at the same building of an university Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze LCC and economical efficiency is compared. The initial cost is considered on the basis of actual costs, and annual energy cost is converted into the cost after measuring electricity and gas consumption a day. LCC applied present value method is used to assess economical efficiency of both them. Variables used to LCC analysis are electricity cost escalation rate, natural gas cost escalation rate, interest rate, and service lives and when each of them are 4%, 2%, 8%, and 20 years, results of analysis short that EHP(148,257,306 won) is 8.05%(12,981,990 won) more profitable than GHP(161,239,295 won).

  • PDF

A Study on the Planning Indicator for Carbon Neutral Green City (탄소중립 녹색도시 구현을 위한 계획지표 설정에 관한 연구)

  • Kim, You-Min;Lee, Joo Hyung
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • The aim of this dissertation is establishing internal indicator list for achieving policy goal of Carbon Neutrality Green City. First of all, it started to construct the basic system of planning indicator based on through comprehension of current studies such as advanced researches, government guidelines and green building certifications. And then it was set up final indicator list through inspecting FGI (Focus Group Interview), Verification of suitability, and Analysis of importance). As a result of this research, the planning indicator divided three steps and there were classified four fields in the top-level; Green Land and Ecology, Green Energy, Green Resource and Transportation, Green Living and Institution. According to the data, it deducted four items (ratio of green land, site plan, heat island and management of climate, base of nature ecology) and twelve index in the field of green land and ecology, three item(energy conservation and self-supporting, energy efficiency, new regeneration energy) and twelve index in the field of green energy and regeneration, five items(water resources utilize and circulation, other resource reduction and circulation, public transportation, green transportation plan) and fifteen index. Totally, Planning Indicators of forty nine were deducted. Therefore, there was the result of importance analysis that the indicators of plan and maintain management as the side of space for carbon neutrality were more appreciated than carbon reduction of individual building.

Rank Correlation Coefficient of Energy Data for Identification of Abnormal Sensors in Buildings (에너지 데이터의 순위상관계수 기반 건물 내 오작동 기기 탐지)

  • Kim, Naeon;Jeong, Sihyun;Jang, Boyeon;Kim, Chong-Kwon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.417-422
    • /
    • 2017
  • Anomaly detection is the identification of data that do not conform to a normal pattern or behavior model in a dataset. It can be utilized for detecting errors among data generated by devices or user behavior change in a social network data set. In this study, we proposed a new approach using rank correlation coefficient to efficiently detect abnormal data in devices of a building. With the increased push for energy conservation, many energy efficiency solutions have been proposed over the years. HVAC (Heating, Ventilating and Air Conditioning) system monitors and manages thousands of sensors such as thermostats, air conditioners, and lighting in large buildings. Currently, operators use the building's HVAC system for controlling efficient energy consumption. By using the proposed approach, it is possible to observe changes of ranking relationship between the devices in HVAC system and identify abnormal behavior in social network.

Analysis of Performance of Balcony Integrated PV System (발코니 일체형 태양광발전시스템의 발전성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;So, Jung-Hoon;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

A Study on Information Visualization using Building Information Modeling (BIM을 이용한 정보 시각화에 관한 연구)

  • Cha, Gi-Chun;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4170-4175
    • /
    • 2015
  • The global warming has been recognized as a serious problem. To solve this problem, the country of all the world have conducted techniques such as energy saving and reduction of greenhouse gas. The 30% of total energy is being consumed by buildings domestically and BAS/BEMS are being operated for the management of building energy. But, BEMS is unsatisfactory condition to manage the energy efficiently. In this study, We investigate real application on Chamsaem elementary school as a target buildings and develop 3D Web Browser platform. The spatial information of target buildings is described with used BIM and the energy information is presented for facilities operation and electricity consumption in floor and facility. We perform the quantitative evaluation based on ISO/IEC 9126 and operate this system for two months. in result, energy decreased by about 16%. We expect that the proposed 3D Web Browser system will bring operating efficiency improvement of the current BEMS.

Sensitivity Analysis on KS and JIS Standard for Heat Recovery Ventilator (KS, JIS 열교환 환기장치 실험규격의 민감도 분석)

  • Yee Jurng-Jae;Ihm Pyeong-Chan;Kim Hwan-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.998-1004
    • /
    • 2005
  • Recently natural ventilation rate is decreased due to the airtightness of apartment building. Therefore the use of heat recovery ventilator (HRV) has been greatly increased as an alternative method to supply fresh air and save energy in the building. In this research the experiment standard of HRV is compared between KS and JIS and the sensitivity analyses are experimented by both standards. Under cooling experiment condition indoor and outdoor wet-bulb temperature difference of JIS is 2 to 3 times higher than that of KS. It shows that the efficiency measurement of HRV by KS is expected to have greater sensitivity than by JIS and thus accurate measurement of web-bulb temperature is required. The experimental results provide that the efficiency of thermal exchange is resemblance to each others between KS and JIS. Under cooling experiment condition the efficiency of humidity exchange by KS presents higher than by JIS, however, under heating experiment condition the efficiency by KS shows lower than by JIS, reversely.

A Study on the Window Energy Rating Systems in Residential Buildings (주거용 건물의 창호에너지평가시스템에 관한 연구)

  • Kim, Dong-Yun;Lim, Hee-Won;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.33-41
    • /
    • 2016
  • Purpose: The window energy rating system was developed in early 1990's and various kind of rating system has been implemented in advanced country such as Europe, Australia, Canada and the US since 2000. In Korea, the Energy Consumption Efficiency Rating Indication System has been implemented to promote supply of high efficiency window since July 2012. Normally, the window energy rating system based on heat balance which considers both thermal losses and solar heat gain is used and applied only to residential buildings. However, the system used nationally only considers thermal losses and is applied to every building regardless of its usage. Therefore, in this study, we indicated problems of domestic window energy rating system and looked for improvements. Method: We analyzed thermal performance of various windows through dynamic simulation applied to detached house and compared results with those of domestic and foreign rating system. Result : Thermal performance of south windows is more affected by SHGC than U-value, and that of north windows is also affected by SHGC a lot. The difference between the results of our study and current system is statistically significant. As a result, appropriate evaluation criteria which considers solar heat gain is required.

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.