• Title/Summary/Keyword: Building Codes

Search Result 476, Processing Time 0.022 seconds

Safety Management of Nanomaterials and Nanoproducts: Thinking of Ethical Principles and Guidelines for It (나노 물질 및 제품의 안전 관리: 윤리적 원리 및 행위지침 고찰)

  • Lee, Jung-Won
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.415-422
    • /
    • 2010
  • Recently as the reports on toxicity of some nanomaterials and the nanoproducts containing these nanomaterials are rapidly increasing, the safety management issues about nanomaterials and nanoproducts are emerging hot. Especially safety in the workplace and that of consumers and the protection of environment, in other words safeties throughout the life-cycle of nanomaterials and products become core issues. Despite the importance of such a safety management, however, it is very difficult to construct the hard regulatory framework for safety, owing to uncertainties and potentialities of nano-risk. In this paper I will look around the ethical principles and guidelines for safety management which are preferentially required before going into the discussion on the construction of hard-regulation such as law and something like that. Under the circumstance that hard-regulations for safety management are not implementable, these principles and guidelines are expected to play a leading part in building the responsible risk-governance framework for nanomaterials and nanoproducts, and finally to become a cornerstone of the hard risk-governance framework.

A Conversion Process to IFC Files for Integrated Use of Open and Web-based BIM Quantities, Process, and Construction Costs in Civil Engineering

  • Lee, Jae-Hong;Hwang, Hee-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.11-23
    • /
    • 2019
  • This paper designs and proposes a file conversion process to IFC file, the international standard file format for BIM, in order to ensure mutual compatability and manageability among users of commercial BIM modeling and design softwares in the civil engineering area. The proposed process insert additional properties consisting of the properties of quantity calculation codes and properties of CBS/OBS/WBS standard classification scheme, to the three dimensional object shape information of the converted IFC files, using add-in converters for commercial BIM modeling softwares. In addition, a process of integrated use of IFC files for open web-based quantity, process(4D), and construction cost(5D) management is additionally designed and implemented. Based on these works, the ultimate goal of this study is to propose a novel process for integrated use of open web-based quantity, process(4D), and construction cost(5D), from the design stage of BIM modeling to the final construction stage in the civil engineering area.

Numerical simulation of wind loading on roadside noise mitigation structures

  • TSE, K.T.;Yang, Yi;Shum, K.M.;Xie, Zhuangning
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.299-315
    • /
    • 2013
  • Numerical research on four typical configurations of noise mitigation structures and their characteristics of wind loads are reported in this paper. The turbulence model as well the model parameters, the modeling of the equilibrium atmospheric boundary layer, the mesh discretization etc., were carefully considered in the numerical model to improve the numerical accuracy. Also a numerical validation of one configuration with the wind tunnel test data was made. Through detailed analyses of the wind load characteristics with the inclined part and the wind incidence angle, it was found that the addition of an inclined part to a noise mitigation structure at-grade would affect the mean nett pressure coefficients on the vertical part, and that the extent of this effect depends on the length of the inclined part itself. The magnitudes of the mean nett pressure coefficients for both the vertical part and the inclined part of noise mitigation structure at-grade tended to increase with length of inclined part. Finally, a comparison with the wind load code British/European Standard BS EN 1991-1-4:2005 was made and the envelope of the mean nett pressure coefficients of the noise mitigation structures was given for design purposes. The current research should be helpful to improve current wind codes by providing more reasonable wind pressure coefficients for different configurations of noise mitigation structures.

A Study on the Fire Life Safety Improvement in Deteriorated Buildings - Focus on the Jongro Goshiwon Fire Analysis (노후 건축물의 화재인명안전 개선방안에 관한 연구 - 종로 고시원 화재사고의 분석을 중심으로 -)

  • Choi, Doo Chan
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.63-68
    • /
    • 2018
  • In this study, to recognize the limitations and problems of fire safety in existing deteriorated buildings in Korea, and to analyze the fire case of Jongno Gooshiwon, the fire life safety assessment was performed and analyzed through fire egress simulation and analyzed the domestic and foreign related codes and regulations. In order to secure the fire safety of existing deteriorated buildings, it is necessary to adopt the systematic introduction and application of fire safety performance evaluation of buildings based on quantitative and objective indicated method for performance maintenance and management for fire life safety.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

A case study of gust factor characteristics for typhoon Morakat observed by distributed sites

  • Liu, Zihang;Fang, Genshen;Zhao, Lin;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.21-34
    • /
    • 2022
  • Gust factor is an important parameter for the conversion between peak gust wind and mean wind speed used for the structural design and wind-related hazard mitigation. The gust factor of typhoon wind is observed to show a significant dispersion and some differences with large-scale weather systems, e.g., monsoons and extratropical cyclones. In this study, insitu measurement data captured by 13 meteorological towers during a strong typhoon Morakot are collected to investigate the statistical characteristics, height and wind speed dependency of the gust factor. Onshore off-sea and off-land winds are comparatively studied, respectively to characterize the underlying terrain effects on the gust factor. The theoretical method of peak factor based on Gaussian assumption is then introduced to compare the gust factor profiles observed in this study and given in some building codes and standards. The results show that the probability distributions of gust factor for both off-sea winds and off-land winds can be well described using the generalized extreme value (GEV) distribution model. Compared with the off-land winds, the off-sea gust factors are relatively smaller, and the probability distribution is more leptokurtic with longer tails. With the increase of height, especially for off-sea winds, the probability distributions of gust factor are more peaked and right-tailed. The scatters of gust factor decrease with the mean wind speed and height. AS/NZ's suggestions are nearly parallel with the measured gust factor profiles below 80m, while the fitting curve of off-sea data below 120m is more similar to AIJ, ASCE and EU.

Numerical prediction of the proximity effects on wind loads of low-rise buildings with cylindrical roofs

  • Deepak Sharma;Shilpa Pal;Ritu Raj
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.277-292
    • /
    • 2023
  • Low-rise structures are generally immersed within the roughness layer of the atmospheric boundary layer flows and represent the largest class of the structures for which wind loads for design are being obtained from the wind standards codes of distinct nations. For low-rise buildings, wind loads are one of the decisive loads when designing a roof. For the case of cylindrical roof structures, the information related to wind pressure coefficient is limited to a single span only. In contrast, for multi-span roofs, the information is not available. In this research, the numerical simulation has been done using ANSYS CFX to determine wind pressure distribution on the roof of low-rise cylindrical structures arranged in rectangular plan with variable spacing in accordance with building width (B=0.2 m) i.e., zero, 0.5B, B, 1.5B and 2B subjected to different wind incidence angles varying from 0° to 90° having the interval of 15°. The wind pressure (P) and pressure coefficients (Cpe) are varying with respect to wind incidence angle and variable spacing. The results of present numerical investigation or wind induced pressure are presented in the form of pressure contours generated by Ansys CFD Post for isolated as well as variable spacing model of cylindrical roofs. It was noted that the effect of wind shielding was reducing on the roofs by increasing spacing between the buildings. The variation pf Coefficient of wind pressure (Cpe) for all the roofs have been presented individually in the form of graphs with respect to angle of attacks of wind (AoA) and variable spacing. The critical outcomes of the present study will be so much beneficial to structural design engineers during the analysis and designing of low-rise buildings with cylindrical roofs in an isolated as well as group formation.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Building Customer Loyalty In Digital Transaction Using QR Code: Quick Response Code Indonesian Standard (QRIS)

  • CHOHAN, Fulshah;ARAS, Muhamad;INDRA, Ricardo;WICAKSONO, Andhika;WINARDI, Freddy
    • Journal of Distribution Science
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • Purpose: Increasing advancements in the technology industry are forcing people to become more accustomed to digital financial transaction activities. The need for fast and secure payment mechanisms has birthing new idea to digital financial transaction services. Along with increasing access to technology in digital payments, new service is developed in the form of digital wallets as the successor for electronic money. Research design, data and methodology: This research aims to find out whether using QR code as digital payment tool can build customer loyalty in consumers, especially to measure the factors of satisfaction, trust and commitment of customers to do payments with QR Codes. The QR code in this study is refer to the Quick Response Code Indonesian Standard (QRIS) which was officially implemented by Bank Indonesia starting on January 1, 2020 as a means of payment for digital transactions nationally. The research method uses a quantitative approach by way of surveying questionnaires using Likert scale of 100 samples. Results: The hypothesis analysis proved that the variables of satisfaction, trust and commitment together have positive and significant influences on customer loyalty. Conclusion: This research found that there are high interest in Millennials to do transaction using QRIS because it is deemed to be more easy, quick and safe. If a customer achieves a level of loyalty in the usage of digital transaction using QRIS then cashless society lifestyle can be considered successful and can be used in the future.

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.