• Title/Summary/Keyword: Building Boundary

Search Result 549, Processing Time 0.024 seconds

Refinement of Building Boundary using Airborne LiDAR and Airphoto (항공 LiDAR와 항공사진을 이용한 건물 경계 정교화)

  • Kim, Hyung-Tae;Han, Dong-Yeob
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.136-150
    • /
    • 2008
  • Many studies have been carried out for automatic extraction of building by LiDAR data or airphoto. Combining the benefits of 3D location information data and shape information data of image can improve the accuracy. So, in this research building recognition algorithm based on contour was used to improve accuracy of building recognition by LiDAR data and elaborate building boundary recognition by airphoto. Building recognition algorithm based on contour can generate building boundary and roof structure information. Also it shows better accuracy of building detection than the existing recognition methods based on TIN or NDSM. Out of creating buffers in regular size on the building boundary which is presumed by contour, this research limits the boundary area of airphoto and elaborate building boundary to fit into edge of airphoto by double active contour. From the result of this research, 3D building boundary will be able to be detected by optimal matching on the constant range of extracted boundary in the future.

  • PDF

Building Boundary Extraction from Airborne LIDAR Data (항공 라이다자료를 이용한 건물경계추출에 관한 연구)

  • Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.923-929
    • /
    • 2008
  • Due to the increasing need for 3D spatial data, modeling of topography and artificial structures plays an important role in three-dimensional Urban Analysis. This study suggests a methodology for solving the problem of calculation for the extraction of building boundary, minimizing the user's intervention, and automatically extracting building boundary, using the LIDAR data. The methodology suggested in this study is characterized by combining the merits of the point-based process and the image-based process. The procedures for extracting building boundary are three steps: 1) LIDAR point data are interpolated to extract approximately building region. 2) LIDAR point data are triangulated in each individual building area. 3) Extracted boundary of each building is then simplified in consideration of its area, minimum length of building.The performance of the developed methodology is evaluated using real LIDAR data. Through the experiment, the extracted building boundaries are compared with digital map.

TECHNIQUE OF EXTRACTING BUILDING BOUNDARIES FROM SEGMENTED ALS POINTS

  • Lee, Jeong-Ho;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.141-144
    • /
    • 2008
  • Many studies have been conducted on extracting buildings from ALS(Airborne Laser Scanning) data. After segmentation or classification of building points, additional steps such as generalization is required to get straight boundary lines that better approximate the real ones. In much research, orthogonal constraints are used to improve accuracies and qualities. All the lines of the building boundaries are assumed to be either parallel or perpendicular mutually. However, this assumption is not valid in many cases and more complex shapes of buildings have been increased. A new algorithm is presented that is applicable to various complex buildings. It consists of three steps of boundary tracing, grouping, and regularization. The performance of our approach was evaluated by applying the algorithm to some buildings and the results showed that our proposed method has good potential for extracting building boundaries of various shapes.

  • PDF

Semi-automatic Extraction of 3D Building Boundary Using DSM from Stereo Images Matching (영상 매칭으로 생성된 DSM을 이용한 반자동 3차원 건물 외곽선 추출 기법 개발)

  • Kim, Soohyeon;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1067-1087
    • /
    • 2018
  • In a study for LiDAR data based building boundary extraction, usually dense point cloud was used to cluster building rooftop area and extract building outline. However, when we used DSM generated from stereo image matching to extract building boundary, it is not trivial to cluster building roof top area automatically due to outliers and large holes of point cloud. Thus, we propose a technique to extract building boundary semi-automatically from the DSM created from stereo images. The technique consists of watershed segmentation for using user input as markers and recursive MBR algorithm. Since the proposed method only inputs simple marker information that represents building areas within the DSM, it can create building boundary efficiently by minimizing user input.

Extraction and Regularization of Various Building Boundaries with Complex Shapes Utilizing Distribution Characteristics of Airborne LIDAR Points

  • Lee, Jeong-Ho;Han, Soo-Hee;Byun, Young-Gi;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.547-557
    • /
    • 2011
  • This study presents an approach for extracting boundaries of various buildings, which have concave boundaries, inner yards, non-right-angled corners, and nonlinear edges. The approach comprises four steps: building point segmentation, boundary tracing, boundary grouping, and regularization. In the second and third steps, conventional algorithms are improved for more accurate boundary extraction, and in the final step, a new algorithm is presented to extract nonlinear edges. The unique characteristics of airborne light detection and ranging (LIDAR) data are considered in some steps. The performance and practicality of the presented algorithm were evaluated for buildings of various shapes, and the average omission and commission error of building polygon areas were 0.038 and 0.033, respectively.

Information Fusion of Photogrammetric Imagery and Lidar for Reliable Building Extraction (광학 영상과 Lidar의 정보 융합에 의한 신뢰성 있는 구조물 검출)

  • Lee, Dong-Hyuk;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.236-244
    • /
    • 2008
  • We propose a new building detection and description algorithm for Lidar data and photogrammetric imagery using color segmentation, line segments matching, perceptual grouping. Our algorithm consists of two steps. In the first step, from the initial building regions extracted from Lidar data and the color segmentation results from the photogrammetric imagery, we extract coarse building boundaries based on the Lidar results with split and merge technique from aerial imagery. In the secondstep, we extract precise building boundaries based on coarse building boundaries and edges from aerial imagery using line segments matching and perceptual grouping. The contribution of this algorithm is that color information in photogrammetric imagery is used to complement collapsed building boundaries obtained by Lidar. Moreover, linearity of the edges and construction of closed roof form are used to reflect the characteristic of man-made object. Experimental results on multisensor data demonstrate that the proposed algorithm produces more accurate and reliable results than Lidar sensor.

Security Interpretation of the Restriction Boundary of Building for Antiquated Tunnel using 3 Dimensional Surveying (3차원 측량에 의한 노후 터널의 건축한계 확보 해석)

  • Bae Sang-Ho;Lee Hyung-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.251-259
    • /
    • 2006
  • For the electrification of the existing railways, the security of the restriction boundary of building with mechanistic stability research on the antiquated tunnel must be accomplished essentially. If the tunnel don't secure its restriction boundary of building, the reconstruction based on improvement of tunnel alignment are generated and its surveying data are required. The precise surveying was conducted with the same coordinate system for three tunnels of Youngdong tramline, and the restriction boundary of building of the straight and curve section were analyzed effectively by acquiring the data of profile and cross section, profile rail-height, rail-grade, cross tunnel height, and restriction boundary of building. This study is presented for valuation data of the stability of the electrification design to construct and analyze restriction boundary of building, which compared with the drawing and its existing design using profile and cross section. After this, it is interoperable to increase the development of real-time monitoring system on the tunnel structures.

Extracting Building Boundary from Aerial LiDAR Points Data Using Extended χ Algorithm (항공 라이다 데이터로부터 확장 카이 알고리즘을 이용한 건물경계선 추출)

  • Cho, Hong-Beom;Lee, Kwang-Il;Choi, Hyun-Seok;Cho, Woo-Sug;Cho, Young-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • It is essential and fundamental to extract boundary information of target object via massive three-dimensional point data acquired from laser scanner. Especially extracting boundary information of manmade features such as buildings is quite important because building is one of the major components consisting complex contemporary urban area, and has artificially defined shape. In this research, extended ${\chi}$-algorithm using geometry information of point data was proposed to extract boundary information of building from three-dimensional point data consisting building. The proposed algorithm begins with composing Delaunay triangulation process for given points and removes edges satisfying specific conditions process. Additionally, to make whole boundary extraction process efficient, we used Sweep-hull algorithm for constructing Delaunay triangulation. To verify the performance of the proposed extended ${\chi}$-algorithm, we compared the proposed algorithm with Encasing Polygon Generating Algorithm and ${\alpha}$-Shape Algorithm, which had been researched in the area of feature extraction. Further, the extracted boundary information from the proposed algorithm was analysed against manually digitized building boundary in order to test accuracy of the result of extracting boundary. The experimental results showed that extended ${\chi}$-algorithm proposed in this research proved to improve the speed of extracting boundary information compared to the existing algorithm with a higher accuracy for detecting boundary information.

A GUIDE FOR NUMERICAL WIND TUNNEL ANALYSIS IN ORDER TO PREDICT WIND LOAD ON A BUILDING (건축물의 풍하중을 예측하기 위한 수치풍동기법)

  • Lee, Mung-Sung;Lee, June-Hee;Hur, Nahm-Keon;Choi, Chang-Koon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.5-9
    • /
    • 2010
  • A numerical wind tunnel simulation is performed in order to predict wind loads acting on a building. The aim of the present study is to suggest a guideline for the numerical wind tunnel analysis, which could provide more detail wind load distributions compared to the wind code and expensive wind tunnel experiments. To validate the present numerical simulation, wind-induced loads on a 6 m cube model is predicted. Atmospheric boundary layer is used as a inlet boundary condition. Various effect of numerical methods are investigated such as size of computational domain, grid density, turbulence model and discretization scheme. The appropriate procedure for the numerical wind tunnel analysis is suggested through the present study.

  • PDF

Analysis of Boundary Conditions for Cost Breakdown Structure in the Construction and Maintenance phase (시공단계와 유지관리단계 비용분류체계의 경계조건 분석)

  • Jeong, Jae-Hyuk;Shin, Han-Woo;Kim, Tae-Hui
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.21-23
    • /
    • 2012
  • The process of building project for planning, designing, construction, maintenance, and waste disposal are related with each other. However, we have a difficulty for estimating building's LCC due not to be flexible each other. Therefore, we analyzed the boundary condition between the process of construction and maintenance, and analyzed the factor of segment. We also suggested the Link System for flexible relation.

  • PDF