• Title/Summary/Keyword: Buffer Cache Replacement Algorithm

Search Result 15, Processing Time 0.021 seconds

A Buffer Cache Replacement Algorithm for Considering both Hybrid Main Memory and Storage (하이브리드 메인 메모리와 스토리지의 특성을 고려한 버퍼 캐시 교체 정책)

  • Kang, Dong Hyun;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.947-953
    • /
    • 2015
  • PRAM is being considered as a potential successor to DRAM because of its characteristics such as byte-addressability, non-volatility, and high density. To gain its benefits, buffer cache replacement algorithm based on PRAM has been actively studied. However, most of the previous studies on buffer cache replacement algorithm limitedly exploit the byte-level performance of PRAM by focusing its limited lifetime and slower access latency compared to DRAM. In this paper, we propose a novel buffer cache replacement algorithm that fully considers the byte-level performance of PRAM and the performance of secondary storage. To take advantage of small size write on PRAM, proposed scheme keeps pages, which are frequently accessed with a small size write, on PRAM and allows the selective page migration from DRAM to PRAM. As a result, our scheme significantly reduces the number of PRAM writes. Our experimental results indicate for real workloads that our scheme reduces the number of PRAM writes by up to 92% and improves its performance by up to 62% compared to CLOCK.

IT-based Technology An Efficient Global Buffer Management ,algorithm for SAN Environments (SAN 환경을 위한 효율적인 전역버퍼 관리 알고리즘)

  • 이석재;박새미;송석일;유재수;이장선
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.71-80
    • /
    • 2004
  • In distributed file-systems, cooperative caching algorithm which owns the data cached at each node jointly is used to reduce an expense of disk access. Cooperative caching algorithm is the method that increases a cache hit-ratio and decrease a disk access as it holds the cache information of distributed systems in common and makes cache larger virtually. Recently, several cooperative caching algorithms decrease the message costs by using approximate information of the cache and increase the cache hit-ratio by using local and global cache fields dynamically. And they have an advantage that increases the whole field hit-ratio by sending a replaced buffer to the idle node on buffers replacement in order to maintain the replaced cache in the cache field. However the wrong approximate information deteriorates the performance, the consistency maintenance goes to great expense to exchange messages and the cost that manages Age-information of each node to choose the idle node increases. In this thesis, we propose a cooperative cache algorithm that maintains correct cache information, minimizes the maintenance cost for consistency and the management cost for buffer Age-information. Also, we show the superiority of our algorithm through the performance evaluation.

  • PDF

Design and Implementation of Buffer Cache for EXT3NS File System (EXT3NS 파일 시스템을 위한 버퍼 캐시의 설계 및 구현)

  • Sohn, Sung-Hoon;Jung, Sung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2202-2211
    • /
    • 2006
  • EXT3NS is a special-purpose file system for large scale multimedia streaming servers. It is built on top of streaming acceleration hardware device called Network-Storage card. The EXT3NS file system significantly improves streaming performance by eliminating memory-to-memory copy operations, i.e. sending video/audio from disk directly to network interface with no main memory buffering. In this paper, we design and implement a buffer cache mechanism, called PMEMCACHE, for EXT3NS file system. We also propose a buffer cache replacement method called ONS for the buffer cache mechanism. The ONS algorithm outperforms other existing buffer replacement algorithms in distributed multimedia streaming environment. In EXT3NS with PMEMCACHE, operation is 33MB/sec and random read operation is 2.4MB/sec. Also, the buffer replacement ONS algorithm shows better performance by 600KB/sec than other buffer cache replacement policies. As a result PMEMCACHE and an ONS can greatly improve the performance of multimedia steaming server which should supportmultiple client requests at the same time.

Performance Evaluation of Disk Replacement Algorithms in a Shared Cluster (공유 디스크 클러스터에서 버퍼 고체 알고리즘의 성능 평가)

  • Cho, Haeng-Rae
    • Journal of KIISE:Databases
    • /
    • v.35 no.6
    • /
    • pp.469-480
    • /
    • 2008
  • A shared disk (SD) cluster couples multiple nodes for high performance transaction processing, and all the coupled nodes share a common database at the disk level. To reduce the number of disk accesses, each node caches database pages in its memory buffer. Since a particular page may be cached simultaneously in different nodes, cache consistency should be maintained to ensure that nodes can always access the most recent version of database pages. Most cache consistency schemes proposed in the SD cluster adopted LRU as a buffer replacement algorithm. In this paper, we first present four buffer replacement algorithms that consider the characteristics of the SD cluster. Then we compare the performance of the buffer replacement algorithms. We perform the experiments on a variety of cluster configurations and database workloads. The experiment results show that the proposed algorithms achieve performance improvement up to 5 times of LRU algorithm.

WWCLOCK: Page Replacement Algorithm Considering Asymmetric I/O Cost of Flash Memory (WWCLOCK: 플래시 메모리의 비대칭적 입출력 비용을 고려한 페이지 교체 알고리즘)

  • Park, Jun-Seok;Lee, Eun-Ji;Seo, Hyun-Min;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.913-917
    • /
    • 2009
  • Flash memories have asymmetric I/O costs for read and write in terms of latency and energy consumption. However, the ratio of these costs is dependent on the type of storage. Moreover, it is becoming more common to use two flash memories on a system as an internal memory and an external memory card. For this reason, buffer cache replacement algorithms should consider I/O costs of device as well as possibility of reference. This paper presents WWCLOCK(Write-Weighted CLOCK) algorithm which directly uses I/O costs of devices along with recency and frequency of cache blocks to selecting a victim to evict from the buffer cache. WWCLOCK can be used for wide range of storage devices with different I/O cost and for systems that are using two or more memory devices at the same time. In addition to this, it has low time and space complexity comparable to CLOCK algorithm. Trace-driven simulations show that the proposed algorithm reduces the total I/O time compared with LRU by 36.2% on average.

Design of an Asynchronous Data Cache with FIFO Buffer for Write Back Mode (Write Back 모드용 FIFO 버퍼 기능을 갖는 비동기식 데이터 캐시)

  • Park, Jong-Min;Kim, Seok-Man;Oh, Myeong-Hoon;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.72-79
    • /
    • 2010
  • In this paper, we propose the data cache architecture with a write buffer for a 32bit asynchronous embedded processor. The data cache consists of CAM and data memory. It accelerates data up lood cycle between the processor and the main memory that improves processor performance. The proposed data cache has 8 KB cache memory. The cache uses the 4-way set associative mapping with line size of 4 words (16 bytes) and pseudo LRU replacement algorithm for data replacement in the memory. Dirty register and write buffer is used for write policy of the cache. The designed data cache is synthesized to a gate level design using $0.13-{\mu}m$ process. Its average hit rate is 94%. And the system performance has been improved by 46.53%. The proposed data cache with write buffer is very suitable for a 32-bit asynchronous processor.

Low-power Buffer Cache Management for Mixed HDD and SSD Storage Systems (HDD와 SSD의 혼합형 저장 시스템을 위한 절전형 버퍼 캐쉬 관리)

  • Kang, Hyo-Jung;Park, Jun-Seok;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • A new buffer cache management scheme that aims at reducing power consumption in mixed HDD and NAND flash memory storage systems is presented. The proposed scheme reduces power consumption by considering different energy-consumption rate of storage devices, I/O operation type (read or write), and reference potential of cached blocks in terms of both recency and frequency. Simulation shows that the proposed scheme reduces power consumption by 18.0% on average and up to 58.9%.

An Efficient Buffer Cache Management Scheme for Heterogeneous Storage Environments (이기종 저장 장치 환경을 위한 버퍼 캐시 관리 기법)

  • Lee, Se-Hwan;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2010
  • Flash memory has many good features such as small size, shock-resistance, and low power consumption, but the cost of flash memory is still high to substitute for hard disk entirely. Recently, some mobile devices, such as laptops, attempt to use both flash memory and hard disk together for taking advantages of merits of them. However, existing OSs (Operating Systems) are not optimized to use the heterogeneous storage media. This paper presents a new buffer cache management scheme. First, we allocate buffer cache space according to access patterns of block references and the characteristics of storage media. Second, we prefetch data blocks selectively according to the location of them and access patterns of them. Third, we moves destaged data from buffer cache to hard disk or flash memory considering the access patterns of block references. Trace-driven simulation shows that the proposed schemes enhance the buffer cache hit ratio by up to 29.9% and reduce the total I/O elapsed time by up to 49.5%.

Design and Performance Analysis of Caching Algorithms for Distributed Non-uniform Objects (분산 이질형 객체 환경에서 캐슁 알고리즘의 설계 및 성능 분석)

  • Bahn, Hyo-Kyung;Noh, Sam-Hyeok;Min, Sang-Lyul;Koh, Kern
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.583-591
    • /
    • 2000
  • Caching mechanisms have been studied extensively to buffer the speed gap of hierarchical storages in the context of cache memory, paging system, and buffer management system. As the wide-area distributed environments such as the WWW extend broadly, caching of remote objects becomes more and more important. In the wide-area distributed environments, the cost and the benefit of caching an object is not uniform due to the location of the object; which should be considered in the cache replacement algorithms. For online operation, the time complexity of the replacement algorithm should not be excessive. To date, most replacement algorithms for the wide-area distributed environments do not meet both the non-uniformity of objects and the time complexity constraint. This paper proposes a replacement algorithm which considers the non-uniformity of objects properly; it also allows for an efficient implementation. Trace-driven simulations show that proposed algorithm outperforms existing replacement algorithms.

  • PDF

Designing a low-power L1 cache system using aggressive data of frequent reference patterns

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.9-16
    • /
    • 2022
  • Today, with the advent of the 4th industrial revolution, IoT (Internet of Things) systems are advancing rapidly. For this reason, a various application with high-performance and large-capacity are emerging. Therefore, there is a need for low-power and high-performance memory for computing systems with these applications. In this paper, we propose an effective structure for the L1 cache memory, which consumes the most energy in the computing system. The proposed cache system is largely composed of two parts, the L1 main cache and the buffer cache. The main cache is 2 banks, and each bank consists of a 2-way set association. When the L1 cache hits, the data is copied into buffer cache according to the proposed algorithm. According to simulation, the proposed L1 cache system improved the performance of energy delay products by about 65% compared to the existing 4-way set associative cache memory.