• 제목/요약/키워드: Buckling pattern

검색결과 82건 처리시간 0.019초

On thermally induced instability of FG-CNTRC cylindrical panels

  • Hashemi, Razieh;Mirzaei, Mostafa;Adlparvar, Mohammad R.
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.43-57
    • /
    • 2021
  • In this study, thermally induced bifurcation buckling of shallow composite cylindrical panels reinforced with aligned single-walled carbon nanotubes is investigated. Distribution of carbon nanotubes across the thickness of the cylindrical panel as reinforcements may be either uniform or functionally graded. Thermo-mechanical properties of the matrix and reinforcements are considered to be temperature dependent. Properties of the cylindrical panel are obtained using a refined micromechanical approach which introduces the auxiliary parameters into the rule of mixtures. The governing equations are obtained by using the static version of the Hamilton principle based on the first-order shear deformation theory and considering the linear strain-displacement relation. An energy-based Ritz method and an iterative process are used to obtain the critical buckling temperature of composite cylindrical panel with temperature dependent material properties. In addition, the effect of various parameters such as the boundary conditions, different geometrical conditions, distribution pattern of CNTs across the thickness and their volume fraction are studied on the critical buckling temperature and buckled pattern of cylindrical panels. It is shown that FG-X type of CNT dispersion is the most influential type in thermal stability.

Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites

  • Zeverdejani, Mehran Karimi;Beni, Yaghoub Tadi
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.103-114
    • /
    • 2020
  • In this research, buckling and free vibration of rectangular polymeric laminate reinforced by graphene sheets are investigated. Various patterns are considered for augmentation of each laminate. Critical buckling load is evaluated for different parameters, including boundary conditions, reinforcement pattern, loading regime, and laminate geometric states. Furthermore, vibration analysis is investigated for square laminate. Elastic properties of the composite are calculated using a combination of both molecular dynamics (MD) and the rule of mixture (MR). Kinematics of the plate is approximated based on the first shear deformation theory (FSDT). The current analysis is performed based on the energy method. For the numerical investigation, Ritz method is applied, and for shape functions, Chebyshev polynomials are utilized. It is found that the number of layers is effective on the buckling load and natural frequency of laminates which made from non-uniform layers.

Effect of varying the size of flatbar stiffeners on the buckling behaviour of thin cylinders on local supports

  • Vanlaere, Wesley;Impe, Rudy Van;Lagae, Guy;Maes, Thomas
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.217-230
    • /
    • 2005
  • A steel silo traditionally consists of a cylindrical and a conical shell. In order to facilitate emptying operations, the cylinder is placed on local supports. This may lead to dangerous stress concentrations and eventually to local instability of the cylindrical wall. In this contribution, the locally supported cylinder is strengthened by means of ring stiffeners and longitudinal stiffeners and the effect of their dimensions on the buckling stress is investigated. This study leads to a number of diagrams, each of them representing the effect of one of the dimensions on the buckling stress. In each diagram, the failure pattern corresponding to the buckling stress is indicated.

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.

Buckling of axial compressed cylindrical shells with stepwise variable thickness

  • Fan, H.G.;Chen, Z.P.;Feng, W.Z.;Zhou, F.;Shen, X.L.;Cao, G.W.
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.87-103
    • /
    • 2015
  • This paper focuses on an analytical research on the critical buckling load of cylindrical shells with stepwise variable wall thickness under axial compression. An arctan function is established to describe the thickness variation along the axial direction of this kind of cylindrical shells accurately. By using the methods of separation of variables, small parameter perturbation and Fourier series expansion, analytical formulas of the critical buckling load of cylindrical shells with arbitrary axisymmetric thickness variation under axial compression are derived. The analysis is based on the thin shell theory. Analytic results show that the critical buckling load of the uniform shell with constant thickness obtained from this paper is identical with the classical solution. Two important cases of thickness variation pattern are also investigated with these analytical formulas and the results coincide well with those obtained from other authors. The cylindrical shells with stepwise variable wall thickness, which are widely used in actual engineering, are studied by this method and the analytical formulas of critical buckling load under axial compression are obtained. Furthermore, an example is presented to illustrate the effects of each strake's length and thickness on the critical buckling load.

단위부재 모델화에 따른 단층 래티스 돔의 탄소성 좌골하중의 산정에 관한 연구 (A Study on the Estimation of Elasto-Plastic Buckling Loads for Sing1e Layer Latticed Domes by Unit Member Modeling Technique.)

  • 한상을;이상주;유용주;이경수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.290-297
    • /
    • 1998
  • In this paper, we propose to a method to estimate the elasto-plastic buckling for single layer latticed domes. First, we assume that each member consists of the rigid zone and elastic spring at both end joint, the elastic element and three elasto-plastic spring to judge for yeilding the member. Next, the member which has most influence on buckling for structures is determined by a distributed pattern of the strain energy which is calculated through linear eigenvalue analysis. And then, normalized slenderness ratio of the element is derived considering the axial force at elastic buckling load. Later, we execute elasto-plastic nonlinear analysis that based on loading increasement method and displacement increasement method. From this results, we discusses the effect of the joint rigidity and the half open angle $\theta$$_{0}$ on the buckling strength of single layer lattice domes ; (1) how the joint rigidity contributes to the reduction of buckling loads, (2) how the reduction can be interrelated to compressive strength curves in terms of the generalized slenderness for the member most relevant to the overall buckling of domes.s.

  • PDF

점용접된 두 사각평판의 형상비 및 용접점수가 압축좌굴하중에 미치는 영향의 유한요소해석에 의한 연구 (The Study on the Effect of the Aspect Ratio and Number of Spots on the Compressive Buckling Load of two Rectangular Plates Spot-Welded by FEM)

  • 한근조;전형용;이현철
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.191-196
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive buckling load is studied with respect to the thickness, aspect ratio of plates, number of welding spots. buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in tow directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.25 and that the effect of number of welding spots in transverse direction was large than that in longitudinal direction.

  • PDF

ESPI를 이용한 정사각튜브의 변형계측 (A Study on Measurement of Displacement Using ESPI Method in Square Tubes)

  • 박찬주;김경석;정현철;장호섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 1997
  • This paper proposes Electronic Speckle Pattern Interferometry(ESPI) for the quantitative buckling analysis of square tube, which is unable to be measured with previous methods. The quantitative buckling analysis in elasticity is important part to study strain-stress analysis of thick-plated tube and fatigue analysis. However, it is unsolved problem with theory and previous experimental method. The merits of ESPI, Whole-filed measurement and high accurate 3D-displacement measurement make it possible to determinate the buckling analysis in elasticity quantitatively.

  • PDF

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

라이즈비에 따른 단층 및 복층 래티스 돔의 좌굴특성에 관한 비교연구 (A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Lattice Dome According to Rise ratio)

  • 권영환;정환목;석창목;박상훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.283-289
    • /
    • 1998
  • In the latticed domes which is a set of space frame, buckling is derived if the external force reaches a limitation by the lightness of the material and the minimization of the member section area. these are concerned with a geometric shape, network pattern, the number of layer, and so on. Most of all, the number of layer of the lattice dome is a important factor from the viewpoint of initial and structure design. Therefore this study compared buckling characteristics of single-layer with double-layer latticed domes and investigated the relativity of buckling-stress-ratio and member-density-ratio according to rise ratio to improve that designers could extend the range of .design selection

  • PDF