• 제목/요약/키워드: Buckling analysis

검색결과 1,755건 처리시간 0.028초

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

면진설계된 KALIMER 원자로용기의 지진좌굴 특성평가 (Evaluation of Seismic Buckling Load for Seismically Isolated KALIMER Reactor Vessel)

  • 구경회
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.220-227
    • /
    • 1999
  • The Purpose of this paper is to evaluate the buckling strength of conceptually designed KALIMER reactor vessel. For evaluation of the buckling load buckling load the design equations and the finite element analysis are used. In finite element method the eigenvalue buckling analysis nonlinear elastic buckling analysis using snap-through buckling method and nonlinear elastic-plastic buckling analysis are carried out. the calculated buckling loads of KALIMER reactor vessel using the finite element method are in well agreement with those of the design equations. From the calculated results of buckling load in KALIMER rector vessel it is shown that the plasticity of vessel materials significantly affects the buckling load but the initial imperfection has little effects, In checking the limits of bucking load of KALIMER reactor vessel using the ASME B & PV Section III. Subsection NH the non-seismic isolation design can not satisfy the buckling limit requirements but the seismic isolation design can sufficiently satisfy the requirements.

  • PDF

Numerical study of dynamic buckling for plate and shell structures

  • Liu, Z.S.;Lee, H.P.;Lu, C.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.241-257
    • /
    • 2005
  • A numerical approach combining the finite element method with two different stability criteria namely the Budiansky and the phase-plane buckling criteria is used to study the dynamic buckling phenomena of plate and shell structures subjected to sudden applied loading. In the finite element analysis an explicit time integration scheme is used and the two criteria are implemented in the Finite Element analysis. The dynamic responses of the plate and shell structures have been investigated for different values of the plate and shell imperfection factors. The results indicate that the dynamic buckling time, which is normally considered in predicting elasto-plastic buckling behavior, should be taken into consideration with the buckling criteria for elastic buckling analysis of plate and shell structures. By selecting proper control variables and incorporating them with two dynamic buckling criteria, the unique dynamic buckling load can be obtained and the problems of ambiguity and contradiction of dynamic buckling load of plate and shell structure can be resolved.

좌굴해석을 이용한 리드프레임 타발용 펀치의 보강설계 (Design of the Stiffened Punch for Stamping of Lead Frame by Buckling Analysis)

  • 고대철;이인수;안병환;김병민
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.68-75
    • /
    • 2006
  • The lead frame manufactured by stamping process plays an important role in connecting semiconductor to PCB board. As a result of the miniaturization of semiconductor, its corresponding lead frame punch has been narrow. In case of the punch with high slenderness ratio such as lead frame punch, the punch can be broken suddenly due to buckling. To prevent the fracture of lead frame punch, some manufacturers have experientially attached stiffeners to weak parts of punch. The purpose of this study, therefore, is to suggest the guideline far design of stiffened punch. The optimal position and the number of stiffeners to be attached to punch are investigated by elastic buckling analysis. The elastic buckling analysis consists of the eigenvalue buckling analysis and nonlinear buckling analysis. The critical buckling load of elastic buckling analysis is compared with that of buckling test. Finally, the guideline far attaching stiffeners is suggested through analysis of cross section of lead frame punch such as moment of inertia and eccentricity.

Buckling of insulated irregular transition flue gas ducts under axial loading

  • Ramadan, H.M.
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.449-458
    • /
    • 2012
  • Finite element buckling analysis of insulated transition flue ducts is carried out to determine the critical buckling load multipliers when subjected to axial compression for design process. Through this investigation, the results of numerical computations to examine the buckling strength for different possible duct shapes (cylinder, and circular-to-square) are presented. The load multipliers are determined through detailed buckling analysis taking into account the effects of geometrical construction and duct plate thickness which have great influence on the buckling load. Enhancement in the buckling capacity of such ducts by the addition of horizontal and vertical stiffeners is also investigated. Several models with varying dimensions and plate thicknesses are examined to obtain the linear buckling capacities against duct dimensions. The percentage improvement in the buckling capacity due to the addition of vertical stiffeners and horizontal Stiffeners is shown to be as high as three times for some cases. The study suggests that the best location of the horizontal stiffener is at 0.25 of duct depth from the bottom to achieve the maximum buckling capacity. A design equation estimating the buckling strength of geometrically perfect cylindrical-to-square shell is developed by using regression analysis accurately with approximately 4% errors.

유한요소법을 이용한 팽창튜브의 좌굴불안전성에 관한 연구 (Study on Buckling Instability of Expansion Tube using Finite Element Method)

  • 최원목;권태수;정현승
    • 한국철도학회논문집
    • /
    • 제13권2호
    • /
    • pp.147-151
    • /
    • 2010
  • 충돌에너지는 다이에 의해 확관되는 팽창튜브의 소성변형에너지로 흡수된다. 충돌에너지를 성공적으로 흡수하기 위하여 튜브가 팽창되는 동안 좌굴이 발생해서는 안 된다. 팽창튜브의 좌굴불안전성은 초기경계조건과 튜브 두께 그리고 길이에 영향을 받는다. 본 연구는 동적 축 하중을 받는 팽창튜브의 좌굴을 예측하기 위한 경계조건의 결정, 기하학적 결함의 적용 그리고 재료의 비선형성과 동적효과를 적용하는 일련의 해석방법 및 절차를 제안하였다. 또한, 기하학적 결함의 적용이 튜브의 좌굴하중과 좌굴형상에 미치는 영향을 유한요소해석 결과를 통하여 분석하였고 튜브두께와 기하학적 결함의 상관관계를 연구하였다. 해석결과 기하학적 결함과 튜브의 좌굴형상은 밀접한 관계가 있었고 튜브의 두께가 작으면 기하학적 결함에 상관없이 좌굴하중은 변하지 않았다. 하지만, 두께가 증가할 경우 결함율이 증가하면 좌굴하중이 감소하는 경향을 보였다.

접촉을 고려한 보의 탄소성 좌굴진행 해석 (An analysis of progressing buckles of thin compressed beam with contact treatment)

  • 김종봉;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.28-31
    • /
    • 1997
  • Buckling analysis of thin compressed beam has been carried out. Pre-buckling and post-buckling are simulated by finite element method incorporating with the incremental nonlinear theory and the Newton-Raphson solution technique. In order to find the bifurcation point, the determinent of the stiffness matrix is calculated at every iteration procedure. For post-buckling analysis, a small perturbed initial guess is given along the eigenvector direction at the bifurcation point. Nonlinear elastic buckling and elastic-plastic buckling of cantilever beam are analyzed. The buckling load and buckled shape of the two models are compared.

  • PDF

등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동 (Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads)

  • 김충만;유은종;나창순
    • 한국전산구조공학회논문집
    • /
    • 제28권1호
    • /
    • pp.53-61
    • /
    • 2015
  • 본 논문에서는 대공간구조에 폭넓게 사용되는 단층 래티스돔의 비선형거동에 관한 비교 연구를 수행하였다. 단층 래티스돔은 특성상 두께가 얇은 쉘구조의 거동과 유사하므로 전통적인 쉘좌굴 이론을 적용하여 내력을 산출할 수 있으며 또한 이 결과를 유한요소해석 프로그램을 이용한 수치해석의 결과와 비교, 분석하였다. 쉘좌굴 이론을 이용하여서는 래티스 돔의 전체좌굴하중과 부재좌굴하중을 산정하였으며, 유한요소해석법을 이용하여서는 고유치 해석에 의한 좌굴하중과 기하학적 비선형 해석에 의한 극한하중을 각각 산정하였다. 래티스돔의 절점은 강절점 및 핀절점으로 각각 모델링하였다. 쉘좌굴이론에 의한 좌굴내력은 전체좌굴하중과 부재좌굴하중의 작은 값으로 결정되며 이 값은 유한요소해석을 이용한 고유치 해석보다는 비선형 해석에 의한 극한하중에 보다 근사한 값을 제공하였으며 또한 좌굴하중의 형식을 예측하는데에 유용하게 활용되었다.

제형 및 사인형 주름 강판의 초기 불완전 형상을 고려한 전단 좌굴 특성 비교 (A Comparitive Study on the Shear Buckling Characteristics of Trapezoidal and Sinusoidal Corrugated Steel Plate Considering Initial Imperfection)

  • 서건호;손수덕;이승재
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.57-64
    • /
    • 2021
  • This paper conducted a comparative analysis of the shear buckling characteristics of trapezoidal and sinusoidal corrugated steel plates considering of their initial imperfection. Initial imperfection refers to the state where the shape of the corrugated plate is initially not perfect. As such, an initially imperfect shape was assumed using the eigen buckling mode. To calculate the buckling stress of corrugated steel plates, the linear buckling analysis used a boundary condition which was applied to the plate buckling analysis. For the comparison of trapezoidal and sinusoidal corrugation, the shape parameters were assumed using the case where the length and slope of each corrugation were the same, and the initial imperfection was considered to be from 0.1% to 5% based on the length of the steel plate. Here, for the buckling analysis, ANSYS, a commercial FEA program, was used. From the results of buckling analysis, the effect of overall initial imperfection showed that the larger the initial imperfection, the lower the buckling stress. However, in the very thin model, interaction or local buckling was dominant in the perfect shape, and in this case, the buckling stress did not decrease. Besides, the sinusoidal model showed higher buckling stress than the trapezoidal one, and the two corrugation shapes decreased in a similar way.

튜브형 충돌에너지흡수부재의 좌굴불안전성에 대한 연구 (The study on the buckling instability of tube type crash energy absorber)

  • 최원목;정현승;권태수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1564-1570
    • /
    • 2007
  • There are normally two types of the energy absorbers used in the crashworthiness of trains. The first is a structure type, which mainly used in not only the primary structures of the train but also the crash energy absorbers at the accident. The second is a module type, which just absorbs the crash energy independent of the primary structures and attached to the structures of the train. The expansion and inversion tube are widely used as the module type crash energy absorbers, especially in the train. The tubes should not be buckled under the load acting on the end of the tube in longitudinal direction during absorbing the crash energy. The buckling stability of the tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the tubes on the buckling load are studied by using the ABAQUS, a commercial finite element analysis program, and then presents the guideline to design the tube. The analysis processes to compute the buckling load consist of a linear buckling analysis and a nonlinear post-buckling analysis. The buckling modes are evaluated by the linear buckling analysis, as using these modes, the buckling loads are computed by the nonlinear post-buckling analysis.

  • PDF