• Title/Summary/Keyword: Brushless dc motor

Search Result 552, Processing Time 0.024 seconds

Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor (가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

ANALYSIS OF PERMANENT MAGNET OVERHANG EFFECT BY USING 3D FEM IN THE POINT OF NOISE AND VIBRATION (3차원 유한요소법을 이용한 BLDC 모터의 영구 자석 오버행에 의한 소음 및 진동 특성)

  • An, Young-Gyu;Kang, Gyu-Hong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.831-832
    • /
    • 2006
  • 본 논문에서는 Brushless DC Motors(이하 BLDC Motor이라 함)의 영구 자석의 오버행에 따른 진동, 소음 특성에 대하여 다루었다. 비대칭 오버행 구조에서는 Z축 방향 힘이 발생한다. 이는 베어링에 손상을 입힐 뿐 아니라 큰 노이즈와 진동을 유발시킨다. 따라서 진동과 소음의 감소를 위한 자석 오버행 효과 해석이 필수적이다. 본 논문에서는 비대칭 영구 자석 오버행 효과를 해석하고 BLDC Motor에서 발생하는 소음과 진동을 분석하였고 비대칭 영구 자석 오버행 효과를 고려하여 Z축 방향의 영향력을 계산하기 위하여 3차원 유한요소법(3D FEM)을 사용하였다.

  • PDF

A study on the Digital Control System for high speed operation of BLDC Motor (BLDC 전동기의 고속운전을 위한 디지털제어기에 관한연구)

  • Cheon, D.J.;Shin, M.S.;Lee, S.H.;Jung, D.Y.;Kim, C.S.;Lee, B.S.;Goak, D.G.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.336-339
    • /
    • 2005
  • This paper presents a PM type BLDC(Brushless DC) Motor servo drive system using high performance DSP TMS320F2812. The DSP controller with 150MIPS enables an enhanced real time implementation and increased efficiency and high performance for motor drive. The suggested drive system consists of PI action for the constant speed control and PID action for the current control with only 3 Halls, no encoders. The developed servo drive control system shows a good response speed characteristics at high speed up to 10000 [rpm].

  • PDF

Current Compensation Scheme to Reduce Torque Ripples of Delta-connected Low-inductance BLDC Motor Drives (델타 결선형 저인덕턴스 BLDC 전동기의 토크 리플 저감을 위한 전류 보상 기법)

  • Park, Do-Hyeon;Lee, Dong-Choon;Lee, Hyong-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.449-456
    • /
    • 2017
  • This study proposes a method for compensating for the commutation torque ripple of delta-connected brushless DC motors with low inductance based on a current predictions. At the commutation instant, a phase current at the next sampling period is predicted and compared with the reference phase current to determine whether torque ripples will occur or not. If the predicted current cannot reach the reference phase current, the reference current is modified and the relevant voltage reference is produced to reduce the torque ripple. The validity of the proposed method has been verified by simulation and experimental results. The commutation torque ripple has been decreased by 17.7% at 1,000 rpm and 80% load conditions.

Finite Element Analysis of a Inner-Rotor Type BLDC Motor without Rotor Core (회전자 철심이 없는 내전형 BLDC 모터의 유한요소 해석)

  • Chang, Hong-Soon;Jung, In-Soung;Baek, Soo-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.652-658
    • /
    • 2000
  • In many cases, ferrite magnets of ferrite bonded magnets used in inner-rotor type small brushless DC(BLDC) motors do not have rotor core. The magnetization directions of permanent magnets do not have only parallel or radial direction. In this case, the characteristics of magnets are different from cored type ones which have uniform magnetization direction. In this paper, the magnetization directions and intensities of a ferrite magnet and a ferrite bonded magnet are analyzed by finite element analysis for magnetization procedure. The characteristics of inner-rotor type BLDC motor are analyzed by using the analyzed results. The validity of the method is verified by comparing the analyzed results with measured ones.

  • PDF

Thust Ripples Reduction in the Moving Magnet Type LDM Using FEM & Phase Control (유한요소법과 위상제어를 이용한 선형직류전동기의 추력리플 저감에 관한 연구)

  • Choi, Jae-Hak;Min, Byoung-Wook;Lee, Ju;Im, Tae-Bin;Sung, Ha-Gyeong;Kim, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.9-11
    • /
    • 1999
  • A brushless and slotless DC linear motor(LDM)employing a movable set of neodymium-iron-boron type of magnets has high performances in advantages of large thrust per weights and accurate position control. But the Moving Magnet LDM produces thrust ripples owing to mainly end-effects, shape and magnetization of permanent magnets and so on. This paper represents the improvements of thrust ripples using the finite elements methods and phase control topology.

  • PDF

Permanent Magnet Design for Reduction of Cogging Torque in Innner Rotor Brushless DC Motor (내전형 BLDC 전동기의 코깅 토크 저감을 위한 영구자석의 형상 설계)

  • Kim, S.C.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.864-866
    • /
    • 2000
  • In the slotted motor, cogging torque is generated due to the interaction between the rotor magnets and the slots on the stator. It is well known that cogging torque produces vibration and noise which may be detrimental to the performance of position and speed control system. Hence, the prediction of cogging torque is very important at the design stage of BLDC motor. In this paper, permanent magnets with different arc an91e of inner and outer radius is proposed. The cogging torque of proposed model and conventional one is analyzed by 2-D FEM and compared.

  • PDF

Comparison and Electromagnetic Analysis of BLDC Motors with Radial and Polar Plastic Magnets (반경 및 원주 방향 자화된 플라스틱 자석을 갖는 BLDC 전동기의 전자기적 특성해석 및 비교)

  • Jang, Seok-Myeong;Cho, Jang-Young;Cho, Han-Wook;Yang, Hyun-Sup;Lee, Sung-Ho;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.25-27
    • /
    • 2005
  • This paper deals with the comparison and analysis of brushless DC (BLDC) motor with radial and polar anisotropic plastic magnet. The open-circuit field distributions and back-emf for BLDC motor with polar plastic magnet are established analytically and the results are validated extensively by comparison with finite element (FE) analyses. On the basis of two dimensional (2-D) analytical solutions, this paper predicts open-circuit field characteristics according to design parameters and makes a comparison between BLDC motor with polar plastic magnet and it with radial plastic magnet in terms of required magnet volume and harmonic of air-gap flux density waveform.

  • PDF

Reduction of Torque Ripple in a BLDC Motor Using an Improved Voltage Control (개선된 전압제어를 이용한 BLDC 전동기의 토크맥동저감)

  • Song, Jeong-Hyun;Jang, Jin-Seok;Kim, Byung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • This paper deals with reduction of torque ripple in a brushless DC motor with input voltage control. The commutation torque ripple can be controlled with varying input voltage, but cogging torque is independent on it. So, in this paper a strategy for minimizing torque ripple is proposed by offsetting the cogging torque with deliberate voltage control. The optimal condition is determined with variable voltage levels and advance angles. As results, it is shown that the method causes 63% decrease of torque ripple.

Performances of BLDCM Drive System for Treadmill Application

  • Ahn, Jin-Woo;Lee, Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.133-138
    • /
    • 2003
  • In this paper, a BLDC motor and its controller are developed for treadmill application. Motor size and structure are restricted in the design stage due to the limited and enclosed space of the treadmill. The shape of the rotor magnet is analyzed using FEM with restricted design conditions. Manufacturing, cost and performance are also considered. A biomechanical analysis of human locomotion with the change of velocity is considered in the design of the controller. For stable operation of the treadmill, current and temperature are to be detected by the DSP controller. The prototype BLDCM and its controller are tested to verify its performances.