• Title/Summary/Keyword: Brushless dc motor

Search Result 552, Processing Time 0.031 seconds

Reducing Cogging Torque in Interior Permanent Magnet type BLDC motor by Flux barriers in the rotor (회전자부의 자속장벽 설치를 통한 IPM type BLDC 전동기 코깅 토오크 저감에 대한 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.64-66
    • /
    • 2004
  • Several techniques have been adopted in motor design of interior permanent magnet (IPM) type brushless DC (BLDC) motor to minimize cogging torque. IPM type motor has better ability in the centralization of flux than surface-mounted permanent magnet (SPM) type BLDC motor. So, the structure of IPM type BLDC motor has high saliency ratios that produce additional torque. However, this structure has a significant cogging torque that generates both vibration and noise. This paper describes new technique of the flux barriers design for reduction of cogging torque of IPM type BLDC motor. To reduce the cogging torque, flux barriers are applied in the rotor. Changing the number of barrier, the cogging torque is analyzed by finite clement method(FEM).

  • PDF

Design of BLDC motor using Parametric design (Parametric Design을 이용한 BLDC 전동기의 설계)

  • Kwon, Soon-O;Lee, Seok-Hee;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1013-1014
    • /
    • 2007
  • This paper presents the design of Brushless DC (BLDC) motor using parametric design. According to the variation of magnitude of back emf and inductance, characteristic equations of BLDC motor are solved then output power, current, and torque ripples are calculated. Therefore output characteristics of BLDC motor according to motor parameter can be easily understood, and the range of back emf and inductance satisfying required output performance can be easily found. Presented design method leads to the BLDC motor design to be simple and effective, and the optimal design of BLDC motor using parametric design for 3kW with 50000rpm is presented.

  • PDF

A STUDY ON OPTIMAL DRIVING METHODS FOR IMPROVING TORQUB CHARACTERISTIC OF MINIATURE BRUSHLESS DC MOTOR (소형브러시리스 DC 전동기의 토크 특성향상을 위한 최적 구동법에 관한 연구)

  • Park, G.T.;Song, M.H.;Kim, Y.I.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.16-20
    • /
    • 1989
  • In this paper, we describe the optimal driving method and magnetic flux distribution of permanent magnet which enhance torque characteristics in small-sized 3-phase brushless DC motors. The disadvantages of conventional $120^{\circ}$ constant current drive method are torque ripple, switching noise and spike voltage due to the inductance of stator coil. This shortcommings can be avoided by the switching slew-rate of driving current which is called linear voltage driving method. The aim of this study is to analyze linear voltage driving method quantatively and to determine optimal drive current waveform through computer simulation. The selection of commutation angle and slew rate of a new driving current at switching instants makes torque ripple index minimize and average torque maximize. And the validity of this new driving method was assured by Fourier analysis. Considering two dimensional nonlinear magnetic flux distribution on the permanent magnet, we suggest optimal flux distribution according to the presented driving method which improves torque characteristics.

  • PDF

Serial Communication-Based Fault Diagnosis of a BLDC Motor Using Bayes Classifier

  • Suh, Suhk-Hoon;Woo, Kwang-Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.308-314
    • /
    • 2003
  • This paper presents a serial communication based fault diagnosis scheme for a brushless DC (BLDC) motor using parameter estimation and Bayes classifier. The presented scheme consists of a smart network board, and a fault detection and isolation (FDI) master. The smart network board is installed near the BLDC motor drive system to acquire motor data and transmit motor data to the FDI-master via serial communication channel. The FDI-master estimates BLDC motor resistance to detect symptom of faults, and assign symptom to fault type using Bayes classifier. In this scheme, since communication time delay has a serious effect on performance, periodic and fixed communication protocol is designed. Hence, the delay time is priory known. By experiment result, presented scheme was verified.

Development and Control of a Small BLDC Motor for Entertainment Robots

  • Lee, Jong-Bae;Park, Chang-Woo;Rhyu, Sae-Hyun;Choi, Jun-Hyuk;Chung, Joong-Ki;Sung, Ha-Gyeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1500-1505
    • /
    • 2004
  • This paper presents the design and control of a small Brushless DC (BLDC) Motor for entertainment robots. In order to control the developed BLDC motor, Adaptive Fuzzy Control (AFC) scheme via Parallel distributed Compensation(PDC) is developed for the multi- input/multi-output plant model represented by the Takagi-Sugeno(TS) model. The alternative AFC scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. The suggested design technique is applied to the velocity control of a developed small BLDC motor for entertainment robots.

  • PDF

Study on Acoustic Resonance of Air-Conditioner Fan BLDC Motor (에어컨 팬 BLDC 전동기의 음향공진에 관한 연구)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Kwon, Joong-Hak;Bang, Ki-Chang;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.212-217
    • /
    • 2008
  • Acoustic noises generated during motor operation in mechanical system are from electromagnetic, mechanical, aerodynamic, and electrical sources. For identification of mechanical noise origins, misalignment, unbalance, fan shape, resonance, and vibration modes have been extensively considered to describe noise behavior. An experiment-based approach as well as a mathematical approach needs to be adopted for a realistic study into noise and vibration of the motor, because motor noise characteristics differ from type to type due to various noise sources. In this paper, a brushless DC motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.

  • PDF

Characteristics Analysis of BLOC Motor with C type Permanent Magnet (C type 영구자석을 갖는 BLDC 모터의 특성 해석)

  • Rhyu, S.H.;Im, T.B.;Chung, J.K.;Ha, K.S.;Lee, S.H.;Lee, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.50-52
    • /
    • 2001
  • The BLDC(Brushless DC) motor with the permanent magnet has many merits such as high efficiency and efficiency. These characteristics of the BLDC motor makes them one of the most popular motors in the world today. The C type ferrite magnet is many used in BLDC motor for high performance, especilly low price. Many papers have been written on the analysis of the BLDC motor with C type ferrite magnet. But, most of these target models are contained symmetric distribution of permanent magnet. In this paper, investigations are made on different distribution of permanent magnets for a understanding of the effects of unequal permanent magnet location on the unbalanced cogging torque. Motor torque and cogging torque are obtained by using the 2 dimensional finite element method.

  • PDF

Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors (BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석)

  • Kim, Tae-Jong;Hwang, Sang-Mun;Park, No-Gil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF

Design and Development of Low-Cost Switched Reluctance Motor Drive System (저가형 스위치드 릴럭턴스 모터 드라이브 시스템 개발)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2162-2167
    • /
    • 2009
  • A Low cost and variable speed brushless motor drive system with single switch per phase is presented. The motor drive is realized with a novel two-phase flux-reversal-free switched reluctance motor and a split AC two switch converter. The strategy of the controller and the converter for its realization are described. Comparisons between a split AC converter, asymmetric converter, split DC converter, single controllable switch converter, and N+1 converter are performed for its device rating, cost, switching losses and conduction losses, and converter efficiency. The split AC converter is analyzed and simulated to verify the characteristics of the converter circuitry and control feasibility and the simulation results are presented. The efficiency with various loads is numerically estimated and experimentally compared from viewpoint of subsystem and system in details. The focus of this paper is to compare the presented motor drive system to the asymmetric converter system throughout experiments and demonstrate single switch per phase converter having comparable efficiency as the asymmetric converter system.

Design and Drive Characteristics of BLDC Motor Control System for Tread Mill Application (Tread Mill 구동용 BLDC 전동기 제어시스템 설계 및 운전특성)

  • 안진우;이동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • Brushless D.C. Motor is widely used for industrial application because of high efficiency and high power density. Especially, in home appliance, BLDCM is very useful due to high control performance and low acoustic noise. In this paper, BLDCM and its controller are designed and developed for tread mill application. With the restricted stator structure, permanent magnet rotor is designed for manufacturing and cost effectiveness using CAD and FEM analysis. A ferrite magnetic material is used as a rotor magnet for the cost and temperature advantages. For a stable operation of tread mill, over current and temperature can be detected and protected. The designed BLDCM and its controller was verified by the experimental results.