• Title/Summary/Keyword: Brushless Direct Current Motor

Search Result 58, Processing Time 0.024 seconds

Optimal Current Control Method of BLDC Motor Utilizing Maximum Torque Point

  • Park, Chang-Seok;Jang, Jung-Hoon;Jung, Tae-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes an optimal current control method for improving efficiency of Brushless Direct Current (BLDC) motor. The proposed optimal current control method is based on the maximum torque point analysis of Finite Element Analysis (FEA). The proposed method can increase the effective voltage at the maximum torque point of BLDC motor and increase the output torque per unit current to increase the efficiency. In order to verify the proposed optimal current control method, have developed the prototype of a 50 [W] class motor drive and experimented by 20 [W] motor using the dynamometer set. This was verified.

The Position and Speed Control of the BLDC Motor Using the Disturbance Observer (외란 관측기를 이용한 BLDCM의 위치 및 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.899-906
    • /
    • 2020
  • Motor control requires robust and precise control performance even in the presence of errors in the mathematical model of the motor and disturbances acting on the motor. For robust and precise control, a disturbance observer was designed to estimate the load fluctuation and applied to a back-stepping controller designed as a nominal system. The control performance of the designed system was verified by applying it to the 120 [W] Brushless Direct Current Motor. As a result of the position control and speed control, the disturbance is overcome from the steady state error converges to zero, and asymptotically stable results can be confirmed.

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

A sensorless speed control of brushless DC motor by using direct torque control (직접토크제어에 의한 브러시리스 직류전동기의 센서리스 속도제어)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.935-939
    • /
    • 2015
  • This paper describes sensorless speed control of brushless DC motors by using direct torque control. Direct torque control offers fast torque response, robust specification of parameter changes, and lower hardware and processing costs compared to vector-controlled drives. In this paper, the current error compensation method is applied to the sensorless speed control of a brushless DC motor. Through this control technique, the controlled stator voltage is applied to the brushless DC motor such that the error between the stator currents in the mathematical model and the actual motor can be forced to decay to zero as time proceeds, and therefore, the motor speed approaches the setting value. This paper discusses the composition of the controller, which can carry out robust speed control without any proportional-integral (PI) controllers. The simulation results show that the control system has good dynamic speed and load responses at wide ranges of speed.

New Cooling System Design of BLDC Motor for Electric Vehicle Using Computation Fluid Dynamics Modeling

  • Vu, Duc Thuan;Hwang, Pyung
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.318-323
    • /
    • 2013
  • Overheating in electrical motors results in detrimental effects such as degradation of the insulation materials, demagnetization of magnets, increases in Joule losses, and decreases in motor efficiency and lifetime. Thus, it is important to find ways to dissipate heat from the motor and to keep the motor operating at its most efficient temperature. In this study, a new design to guide air flow through a given brushless direct current (BLDC) motor is developed and the design is analyzed, specifically by using computational fluid dynamics (CFD) simulations. The results showed that the temperature distribution in the three proposed models is lower than that in the original model, although the speed of the cooling fan in the original model reaches a very high value of $15{\times}10^3$ rpm. The results also showed that CFD can be effectively used to simulate the heat transfer of BLDC motors.

A study on the Development of Sensorless Driver for Electric Compressor Brushless DC Motor (전동식 컴프레서 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • Cho, Jung-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.374-375
    • /
    • 2019
  • In this paper, In the whole industry, there is a tendency to replace brushless motors with brushless motors because of the high rate of failure in DC motors with brushes. Accordingly, many methods for driving a brushless motor have been developed and studied. In order to drive the brushless motor, it is essential to know the information about the rotor position of the motor. However, it is not possible to use a position sensor for rotor disconnection due to the structure of an electric compressor brushless DC motor. In this paper, we investigate the rotor position of the motor by using the counter electromotive force included in the voltage of the terminal made by Y connection by using the resistance of each phase without using Hall sensor or encoder generally used to detect the rotor position. A sensorless drive system for a square wave brushless direct current (DC) motor is proposed. To do this, we propose a method to detect the rotor position from the analyzed terminal voltage waveform by performing terminal voltage analysis of each phase for 3-phase, 2-exciton unipolar PWM.

  • PDF

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • Duy, Vo Hoang;Hung, Nguyen;Jeong, Sang-Kwun;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

A Research for Novel Brushless Direct Current Motor Position Senseless Drive Using Single Current Sensor (단일전류센서를 이용한 브러시리스 직류 전동기의 새로운 센서리스 제어에 관한 연구)

  • Kim, Byung-Bok;Jang, Jae-Wan;Jang, Ki-Bong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.141-143
    • /
    • 2003
  • This paper proposes a new sensorless drive system for the trapezoidal Brushless Direct Current (BLDC) motor requiring mechanical position or speed sensor. The proposed method is using only one current sensor For this an indirect rotor position sensing method from the periodically variation DC Link current waveform. DC Link current waveform change from high to low when BLDC commutate status. This algorithm was verified by simulations using MATLAB SIMULINK and experiment.

  • PDF

Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles (경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계)

  • Park, Won-seok;Kunn, Young;Lee, Sang-hunn;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.612-615
    • /
    • 2013
  • Hub BLDC(Brushless Direct Current) motor, called wheel-in motor is a outer rotor type high efficient direct driving motor which have a multi-pole permanent magnet type rotor as a driving wheel. This study shows a hub BLDC motor speed controller design methode using PIC micro controller to drive 2 wheels or 3 wheels driving body having hub motor driving shaft. The motor driver unit consists of six discrete MOSFET switching devices and the gate driving module is directly designed for high economy.

  • PDF

An IPM(Intelligent Power Module) performance evaluation system for the driving of a multi-pole BLDC motor (다극 BLDC 전동기 구동을 위한 IPM(Intelligent Power Module) 성능 평가 시스템)

  • Min, Bung-kil;Kunn, Young;Hwang, Min-kyu;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.686-689
    • /
    • 2014
  • This Paper is about the study that use the IPM(Intelligent Power Module) which is a integrated switching module to drive inverter gates for driving of a multi-pole BLDC(Brushless Direct Current) motors. When designing a inverter using the various manufacturers IPM, it suggests a electronic circuit system to evaluate the electrical and logical characteristics of the IPM with various brands.

  • PDF