• Title/Summary/Keyword: Brownlie 수집자료

Search Result 4, Processing Time 0.021 seconds

Computation of Bed Load Transport in Rivers (하천 소류사 이동량의 산정)

  • Yu, Dong-Hun;Sin, Seung-Ho;Im, Hak-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.711-723
    • /
    • 2000
  • Existing equations of bed load transport have large variations in their forms and adopt different variables so that it is very difficult to understand the characteristics of each equation. Different sets of measurement data have been employed for the development of various equations, and the comparison between them is completely dependent on the choice of the data for the verification. Several equations seem to have some defects in their basic assumptions. Various non-dimensional physical numbers directly associated with the mechanism of bed load transport are related with each other, and one of them is chosen for the unification of the form. Good ideas introduced in a certain equation are employed for the refinement of other equations. Then optimum values of empirical parameters have been determined by using the data collected by Brownlie(1981) and a new bed load equation has been developed, which is considered widely valid and relatively very accurate.curate.

  • PDF

Bed Load Transport Equations (소류사량 산정식)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.52-60
    • /
    • 1996
  • Existing equations of bed load transport are reviewed mainly considering the meaning and. role of variables used in the equations. The development of several equations and the problems of each equation are investigated by comparing their computed results against field or laboratory data. On the basis of the review remedies of each equation are suggested, and modified forms of existing equations are developed for wider application and improvement in the accuracy. Empirical parameters introduced in each equation are determined by testing them against Brownlie(1985)'s collected data, and discrepancy ranges of the refined equations are shown to see their degrees of accuracy.

  • PDF

Improvement of Einstein's Suspended Load Equation (Einstein 부유사량 산정식의 개선)

  • Yu, Dong-Hun;Sin, Seung-Ho;Im, Hak-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.815-825
    • /
    • 2000
  • In the present work Einstein's(l942) suspended load equation IS refined in vanous aspects. After checking the flow characteristics a new method is presented for the estimation of zero velocity point at the condition of smooth turbulent flow, and non-dimensional number of suspended load is introduced for the clear representation of suspended load equation. And a recent equation of bed load is employed in order to calculate accurately the sediment concentration at a reference point. Several approximation equations are also developed to compute directly or explicitly two integrals introduced in the equations. The refined equation has been tested against the measurement data collected by Brownlie(l981) in comparison with Einstein's original equation.uation.

  • PDF

Channel-forming discharge calculation and stable channel section evaluation for downstream reach of Yeongju dam in Naesung stream (내성천의 영주댐 하류 구간의 하도형성유량 산정 및 안정하도 단면 평가)

  • Jang, Eun-Kyung;Ahn, Myeonghui;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.183-193
    • /
    • 2018
  • Channel-forming discharge for downstream section of Yeongju dam in Naesung stream was calculated to analyze stable channel geometry. Determined channel-forming discharge was applied to design stable channel slope, depth, and base width at Yonghyeol station. Used data for channel-forming discharge and stable channel analysis were collected in downstream section of Yeongju dam in Naesung stream before the dam construction. Specified recurrence interval discharge, effective discharge, and bankfull discharge were analyzed and compared to decide final channel-forming discharge which was $260m^3/s$ of bankfull discharge. Stable channel analysis and design program was applied to predict stable channel section of width, depth, and slope with various sediment transport equations of Ackers and White, Brownlie, Engelund and Hansen, and Yang's equations. As a result, all equations of sediment transport produced milder slopes compared to current bed slope of 0.00177 and Ackers and White equation presented the most similar flow depth of current section with the design constraint of current channel width.